uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Addressing concept drift to improve system availability by updating one-class data-driven models
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datalogi. (UDBL)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datalogi. (UDBL)
2015 (Engelska)Ingår i: Evolving Systems, ISSN 1868-6478, E-ISSN 1868-6486, Vol. 6, nr 3, s. 187-198Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Data-driven models have been used to detect system faults, thereby increasing industrial system availability. The ability to search data streams while dealing with concept drift are challenges for data-driven models. The objective of this work is to demonstrate a general method to manage concept drift when using one-class data-driven models. The method has been used to develop an automatically retrained and updated polygon-based model. In this paper, the available industrial data allowed for use of one-class data-driven models, and the polygon-based model was selected because it has previously been successful. Possible scenarios that allow one-class data-driven models to be retrained or updated were identified. Based on the identified scenarios, a method to automatically update a polygon-based model online is proposed. The method has been tested and verified using data collected from a Bosch Rexroth Mellansel AB hydraulic drive system. Data representing relevant faults was inserted into the data set in close collaboration with engineers from the company. The results show that the developed polygon-based model method was able to address the concept drift issue and was able to significantly improve the classification accuracy compared to the static polygon-based model. Thereby, the model could significantly improve industrial system availability when applied in the relevant production process. This paper shows that the developed polygon-based model requires small memory space while its updating procedure is simple and fast. Finally, the identified scenarios may be helpful as input for supporting other one-class data-driven models to cope with concept drift, thus increasing the generalizability of the results.

Ort, förlag, år, upplaga, sidor
2015. Vol. 6, nr 3, s. 187-198
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:uu:diva-224762DOI: 10.1007/s12530-014-9107-zOAI: oai:DiVA.org:uu-224762DiVA, id: diva2:718190
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF)Tillgänglig från: 2014-04-29 Skapad: 2014-05-20 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Alzghoul, AhmadLöfstrand, Magnus

Sök vidare i DiVA

Av författaren/redaktören
Alzghoul, AhmadLöfstrand, Magnus
Av organisationen
Datalogi
I samma tidskrift
Evolving Systems
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1013 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf