uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Impact of Linker in Polypyrrole/Quinone Conducting Redox Polymers
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.ORCID-id: 0000-0002-5496-9664
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.ORCID-id: 0000-0002-9092-261X
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 5, nr 15, s. 11309-11316Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Organic conducting redox polymers are being investigated as the active component for secondary battery applications, as they have the potential to solve two of the main problems with small molecule-based organic electrodes for electrical energy storage, viz dissolution of the active compound in the electrolyte, and slow charge transport through the material. Herein we report the synthesis of a series of conducting redox polymers based on polypyrrole with hydroquinone pendant groups that are attached to the backbone via different linkers, and we investigate the impact of the linker on the interaction between the backbone and the pendant groups. For the directly linked polymer, oxidation of the pendant groups leads to a decrease of bipolaron absorbance, as well as a decrease in mass of the polymer film, both of which are reversible. The origin of these effects is discussed in light of the influence of the linker unit, electrolyte polarity, and electrolyte salt. For the longest linkers in the series, no interaction was observed, which was deemed the most beneficial situation for energy storage applications, as the energy storage capacity of the pendant groups can be utilized without disturbing the conductivity of the polymer backbone.

Ort, förlag, år, upplaga, sidor
2015. Vol. 5, nr 15, s. 11309-11316
Nationell ämneskategori
Fysikalisk kemi Teknik och teknologier Nanoteknik
Forskningsämne
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
URN: urn:nbn:se:uu:diva-230488DOI: 10.1039/c4ra15708gISI: 000348986900057OAI: oai:DiVA.org:uu-230488DiVA, id: diva2:745481
Tillgänglig från: 2014-09-10 Skapad: 2014-08-26 Senast uppdaterad: 2017-12-05
Ingår i avhandling
1. Conducting Redox Polymers for Electrical Energy Storage: Backbone - Substituent Interactions in Quinone Polypyrrole Model Systems
Öppna denna publikation i ny flik eller fönster >>Conducting Redox Polymers for Electrical Energy Storage: Backbone - Substituent Interactions in Quinone Polypyrrole Model Systems
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Organic electrical energy storage (EES) is a growing field of research that is expected to play an important role in the future, as the need for sustainable EES increases. Conducting redox polymers (CRPs), i.e. conducting polymers with incorporated redox active moieties e.g. as pendant groups (PGs), are proposed as a promising class of compounds for this purpose. Redox cycling of the PGs can be utilized for high charge storage capacity, while the conducting polymer backbone provides fast charge transport through the material. Some of the major challenges with small-molecule systems for EES could be solved by using CRPs, e.g. capacity fading due to dissolution of the active compound, and high resistance due to slow charge transport between molecules. The latter issue is often solved by adding large amounts of conducting additives to the active material, drastically lowering the specific capacity. In this project, CRPs are shown to be able to function in battery cells without any additives, making both high capacity and high power possible. Although several CRPs have been reported in the literature, very few detailed studies have been conducted on the electrochemical processes of the two systems (i.e. the conducting polymer backbone and the redox active PGs). An important factor to consider in CRP design is the possibility for interaction between the two redox systems, which could be either beneficial or detrimental to the function as EES material. In this thesis, CRP model systems composed of hydroquinone functionalized polypyrrole have been studied, and they exhibit separate redox reactions for the PGs and the backbone, overlapping in potential. Significant interaction between them was observed, as oxidation of the PGs has severe impact on the backbone: When the oxidized and hydrophobic p-benzoquinone PGs are formed, they pack and force the polymer backbone to twist, localizing the bipolarons, and decreasing the conductivity. This is accompanied by a contraction of the polymer film and expulsion of electrolyte. Overall, the interaction in these polymers is destructive for their EES function, and it could be eliminated by introduction of a long linker unit between the PGs and the backbone.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2014. s. 72
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1177
Nyckelord
Organic energy storage, Hydroquinone polymers, Functionalized polypyrrole, Spectroelectrochemistry, Electrochemical quartz crystal microbalance, In situ conductivity
Nationell ämneskategori
Nanoteknik
Identifikatorer
urn:nbn:se:uu:diva-230647 (URN)978-91-554-9033-1 (ISBN)
Disputation
2014-10-30, Polhemssalen, Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:30 (Engelska)
Opponent
Handledare
Tillgänglig från: 2014-10-03 Skapad: 2014-08-27 Senast uppdaterad: 2015-01-23Bibliografiskt granskad
2. Quinone-Pyrrole Dyad Based Polymers for Organic Batteries: From Design to Application
Öppna denna publikation i ny flik eller fönster >>Quinone-Pyrrole Dyad Based Polymers for Organic Batteries: From Design to Application
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Organic electrode materials are finding increasing use in energy storage devices due to their attractive properties that allow building of flexible and low weight devices in an environmentally friendlier manner than traditional alternatives. Among these organic electrode materials, conducting redox polymers (CRPs), consisting of conducing polymer (CP) with covalently attached redox active pendant groups (PG), have attracted our interests. This is due to the advantageous synergy between CP and PG, e.g. electronic conductivity, high stability and large charge storage capacity. In this thesis polypyrrole has been selected as CP and quinones as PGs. A series of quinone-pyrrole dyad polymers has been synthesized with a variety of quinone substituents, demonstrating the adjustability of quinone formal potentials by choice of substituents. Importantly, in this series we show that the CP-PG redox match, i.e. that the formal potential of the PG is within the conducting region of the CP, is a requirement for fast charge transfer from the electrode to the PGs. Moreover, a series of quinone-pyrrole dyad polymers with various linkers was synthesized, showing that the choice of linker has a pronounced impact on the interactions between the PG and CP. In addition, the temperature dependence of conductance during doping of the polymers reveals the charge transport mechanism. To summarize, the adjustability of the quinone formal potential as well as the fast charge transport in the bulk material ensures the applicability of the CRPs as electrode materials in organic batteries.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 73
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1483
Nyckelord
Organic battery, conducting polymer, quinone, polypyrrole, spectroelectrochemistry, conductance
Nationell ämneskategori
Nanoteknik
Identifikatorer
urn:nbn:se:uu:diva-316492 (URN)978-91-554-9832-0 (ISBN)
Disputation
2017-04-21, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2017-03-30 Skapad: 2017-03-01 Senast uppdaterad: 2017-04-18

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Karlsson, ChristofferHuang, HaoStrømme, MariaGogoll, AdolfSjödin, Martin

Sök vidare i DiVA

Av författaren/redaktören
Karlsson, ChristofferHuang, HaoStrømme, MariaGogoll, AdolfSjödin, Martin
Av organisationen
Nanoteknologi och funktionella materialSyntetisk organisk kemi
I samma tidskrift
RSC Advances
Fysikalisk kemiTeknik och teknologierNanoteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1428 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf