uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparing a knowledge-based and a data-driven method in querying data streams for system fault detection: A hydraulic drive system application
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datalogi. (UDBL)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datalogi. (UDBL)
Visa övriga samt affilieringar
2014 (Engelska)Ingår i: Computers in industry (Print), ISSN 0166-3615, E-ISSN 1872-6194, Vol. 65, nr 8, s. 1126-1135Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The field of fault detection and diagnosis has been the subject of considerable interest in industry. Fault detection may increase the availability of products, thereby improving their quality. Fault detection and diagnosis methods can be classified in three categories: data-driven, analytically based, and knowledge-based methods.

In this work, we investigated the ability and the performance of applying two fault detection methods to query data streams produced from hydraulic drive systems. A knowledge-based method was compared to a data-driven method. A fault detection system based on a data stream management system (DSMS) was developed in order to test and compare the two methods using data from real hydraulic drive systems.

The knowledge-based method was based on causal models (fault trees), and principal component analysis (PCA) was used to build the data-driven model. The performance of the methods in terms of accuracy and speed, was examined using normal and physically simulated fault data. The results show that both methods generate queries fast enough to query the data streams online, with a similar level of fault detection accuracy. The industrial applications of both methods include monitoring of individual industrial mechanical systems as well as fleets of such systems. One can conclude that both methods may be used to increase industrial system availability.

Ort, förlag, år, upplaga, sidor
2014. Vol. 65, nr 8, s. 1126-1135
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:uu:diva-232173DOI: 10.1016/j.compind.2014.06.003OAI: oai:DiVA.org:uu-232173DiVA, id: diva2:746803
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF), RIT08-0041Tillgänglig från: 2014-07-05 Skapad: 2014-09-15 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Alzghoul, AhmadLöfstrand, Magnus

Sök vidare i DiVA

Av författaren/redaktören
Alzghoul, AhmadLöfstrand, Magnus
Av organisationen
Datalogi
I samma tidskrift
Computers in industry (Print)
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1106 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf