Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Estimating volcanic ash hazard in European airspace
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.ORCID iD: 0000-0001-7909-0640
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
2014 (English)In: Journal of Volcanology and Geothermal Research, ISSN 0377-0273, E-ISSN 1872-6097, Vol. 286, p. 55-66Article in journal (Refereed) Published
Abstract [en]

The widespread disruption of European air traffic in late April 2010, during the eruption of Eyjafjallajökull,showed the importance of early assessment of volcanic hazard from explosive eruptions. In this study, wefocus on the short-term hazard of airborne ash from a climatological perspective, focusing on eruptions onIceland. By studying eruptions of different intensity and frequency, we estimate the overall probability that ashconcentration levels considered hazardous to aviation are exceeded over different parts of Europe.

The method involves setting up a range of eruption scenarios based on the eruptive history of Icelandic volcanoes,and repeated simulation of these scenarios for 2 years' worth of meteorological data. Simulations are conducted using meteorological data from the ERA-Interim reanalysis set, which is downscaled using the Weather Researchand Forecasting (WRF) model. The weather data are then used to drive the Lagrangian particle dispersion model FLEXPART-WRF for each of the eruption scenarios. A set of threshold values, commonly used in Volcanic Ash Advisories, are used to analyze concentration data from the dispersion model.

We see that the dispersion of ash is highly dominated by the mid-latitude westerlies and mainly affect northern UK and the Scandinavian peninsula. The occurrence of high ash levels from Icelandic volcanoes is lower over con-tinental Europe but should not be neglected for eruptions when the release rate of fine ash (<16 μm) is in theorder of 107 kg s−1 or higher.

There is a clear seasonal variation in the ash hazard. During the summer months, the dominating dispersiondirection is less distinct with some plumes extending to the northwest and Greenland. In contrast, during thewinter months, the strong westerly winds tend to transport most of the emissions eastwards. The affected area of a winter-time eruption is likely to be larger as high concentrations can be found at a further distance downwind from the volcano, effectively increasing the probability of hazardous levels of ash reaching the European continent.

The concentration thresholds for aviation, which were adopted after the Eyjafjallajökull eruption in 2010, havestrong influence on the hazard estimates for weaker eruptions but is less important for larger eruptions; thusash forecasts for weaker eruptions are likely more uncertain in comparison to larger eruptions.

Place, publisher, year, edition, pages
2014. Vol. 286, p. 55-66
Keywords [en]
Dispersion modelling, FLEXPART, Aviation safety, Climatology Hazard, Iceland
National Category
Meteorology and Atmospheric Sciences Geosciences, Multidisciplinary
Identifiers
URN: urn:nbn:se:uu:diva-233386DOI: 10.1016/j.jvolgeores.2014.08.022ISI: 000346551400006OAI: oai:DiVA.org:uu-233386DiVA, id: diva2:752107
Available from: 2014-10-02 Created: 2014-10-02 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Atmospheric Dispersion Modellingof Volcanic Emissions
Open this publication in new window or tab >>Atmospheric Dispersion Modellingof Volcanic Emissions
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Gases and particles released by volcanoes pose a serious hazard to humans and society. Emis-sions can be transported over long distances before being reduced to harmless concentrations.Knowing which areas are, or will be, exposed to volcanic emissions is an important part inreducing the impact on human health or society. In this thesis, the dispersion of volcanic emis-sions is studied using a set of atmospheric models. Two case studies have been performed, onestudying potential ash emission from future eruptions on Iceland, and a second covering SO2 emissions from Mt. Nyiragongo in D.R. Congo

The first study covers long range (∼1,000 km) dispersion of fine ash from explosive erup-tions. Three years of meteorological data are used to repeatedly simulate five eruption scenarios.The resulting concentrations of airborne ash at different times relative the onset of each eruptionis compared to current and previous threshold concentrations used by air traffic controllers. Theash hazard showed a seasonal variation, with a higher probability of efficient eastward transportin winter, compared to summer; summer eruptions pose a more persistent hazard.

In the second study, emissions of SO2 from passive degassing at Mt. Nyiragongo is studiedover a one–year period. The meteorological impact on the dispersion is studied by assigninga fixed emission source. Furthermore, flux measurements from the remote sensing data areused to improve the description of the emission source. Gases are generally transported to thenorth-west in June–August and to the south-west in December–January. A diurnal variation dueto land breeze around lake Kivu contributes to high concentrations of SO2 along the northernshore during the night. Daily averaged concentrations in the city of Goma (∼15 km SW of thesource) exceeded the European Union’s air quality standard (125 μg/m 3 ) for 120-210 days overa one year period.

Abstract [sv]

Gas- och partikelutsl ̈app fr ̊an vulkaner utg ̈or en fara för människor och för vårt samhälle. Utsläppen kan transporteras över långa avstånd innan de reduceras till ofarliga halter. Att kännatill vilka områden som utsätts, eller kommer utsättas, för utsläppen är ett viktigt verktyg för att minska påverkan påv folkhälsa och samhället. I den här avhandlingen studeras spridningen av utsläpp från vulkaner med hjälp av en uppsättning atmosfärsmodeller. Två fallstudier har utförts,en fokuserar på vulkanaska från potentiella framtida utbrott på Island, den andra studerar SO2 -ustl äpp fr ̊an Nyiragongo i Demokratiska Republiken Kongo.

Den f ̈orsta studien beskriver l ̊angv ̈aga (∼1,000 km) transport av aska från explosiva utbrott.Tre är av meteorologiska data används för att modellera spridningen från fem olika utbrotts-scenarier för varierande vädersituationer. Koncentrationen av luftburen aska studeras vid olikatidpunkter relativt utbrottens starttid och j ̈amf ̈ors med tidigare samt befintliga gränsvärden för flygtrafik. Sannolikheten för skadliga halter aska varierar med årstid, med en högre sannolikhetför effektiv transport österut under vintermånaderna, jämfört med sommarmånaderna; sommar-utbrott är istället mer benägna att orsaka långvariga problem över specifika områden.

I den andra studien modelleras utsl ̈app av SO 2 från passiva utsläpp vid Nyiragongo över en ettårsperiod. Den meteorologiska effekten på spridningen studeras genom att använda en konatant utsläppskälla. Dessutom studeras spridningen mer i detalj genom att använda fjärranalysdata för att bättre uppskatta utsläppen. Gaserna transporteras i regel mot nordväst i juni–augusti ochmot sydväst i december–februari. En sjö-/landbriscirkulation runt Kivusjön orsakar höga halterav SO2 längs sjöns norra strand nattetid. Dygnsmedelkoncentrationer av SO2 i provinshuvud-staden Goma (∼15 km sydväst om Nyiragongo) överskred EU-riktlinjer (125 μg/m3 ) under 120-210 dagar under en ettårsperiod.

Place, publisher, year, edition, pages
Uppsala universitet, 2015
National Category
Meteorology and Atmospheric Sciences
Research subject
Meteorology
Identifiers
urn:nbn:se:uu:diva-263081 (URN)
Presentation
2015-10-09, Småland Dm235, Geocentrum, Villavägen 16, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2015-10-12 Created: 2015-09-25 Last updated: 2017-01-25Bibliographically approved
2. Dispersion modelling of volcanic emissions
Open this publication in new window or tab >>Dispersion modelling of volcanic emissions
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Spridningsmodellering av utsläpp från vulkaner
Abstract [en]

Gases and particles released by volcanoes pose a serious hazard to humans and society. Emissions can be transported over long distances before being reduced to harmless concentrations. Knowing which areas are, or will be, exposed to volcanic emissions is an important part inreducing the impact on human health and society. In this thesis, the dispersion of volcanic emissions is studied using a set of atmospheric models.

The work includes contribution to the development of the Lagrangian Particle Dispersion Model FLEXPART-WRF. Three case studies have been performed, one studying potential ash emissions from potential future eruptions on Iceland, a second covering SO2 emissions from Mt. Nyiragongo in D.R. Congo, and a third studying the SO2 emission rate of the Holuhraun eruption (Iceland) in 2014–2015.

The first study covers volcanic ash hazard for air traffic over Europe. Three years of meteorological data are used to repeatedly simulate dispersion from different eruption scenarios. The simulations are used to study the probability of hazardous concentrations in ash in European airspace. The ash hazard shows a seasonal variation with a higher probability of efficient eastward transport in winter, while summer eruptions pose a more persistent hazard.

In the second study, regional gas exposure around Mt. Nyiragongo is modelled using flux measurements to improve the description of the emission source. Gases are generally transported to the north-west in June–August and to the south-west in December–January. A diurnal variation due to land breeze around lake Kivu contributes to high concentrations of SO2 along the northern shore during the night. Potentially hazardous concentrations are occasionally reached in populated areas in the region, but mainly during the nights.

The third study uses inverse dispersion modelling to determine the height and emission rates based on traverse measurements of the plume at 80–240 km from the source. The calculated source term yields better agreement with satellite observations compared to commonly used column sources.

The work in this thesis presents improvements in dispersion modelling of volcanic emissions through improved models, more accurate representation of the source terms, and through incorporating new types of measurements into the modelling systems.

Abstract [sv]

Gas- och partikelutsläpp från vulkaner utgör en fara för människor och för vårt samhälle. Utsläppen kan transporteras över långa avstånd innan de reduceras till oskadliga halter. Att känna till vilka områden som utsätts för, eller kommer utsättas för, utsläppen är ett viktigt verktyg föratt minska påverkan på folkhälsa och samhälle. I avhandlingen studeras spridningen av utsläpp från vulkanutbrott med hjälp av en uppsättning numeriska atmosfärsmodeller.

Den Lagrangiska Partikelspridningsmodellen FLEXPART-WRF har förbättrats och applicerats för spridningsmodellering av vulkanutbrott. Tre studier har utförts, en fokuserar på vulkanaska från potentiella framtida utbrott på Island, den andra studerar SO2-ustläpp från vulkanen Nyiragongo i Demokratiska Republiken Kongo, och den tredje studerar SO2-ustläpp från utbrottet i Holuhraun (Island) 2014–2015.

Den första studien uppskattar sannolikheten för att vulkanaska från framtida vulkanutbrott på Island ska överskrida de gränsvärden som tillämpas för flygtrafik. Tre år av meteorologisk data används för att simulera spridningen från olika utbrottsscenarier. Sannolikheten för skadliga halter aska varierar med årstid, med en högre sannolikhet för effektiv transport österut under vintermånaderna, sommarutbrott är istället mer benägna att orsaka långvariga problem överspecifika områden.

In den andra studien undersöks spridningen av SO2 från Nyiragongo över en ettårsperiod. Flödesmätningar av plymen används för att förbättra källtermen i modellen. Gaserna transporteras i regel mot nordväst i juni–augusti och mot sydväst i december–februari En dygnsvariation, kopplad till mesoskaliga processer runt Kivusjön, bidrar till förhöjda halter av SO2 nattetid längs Kivusjöns norra kust. Potentiellt skadliga halter av SO2 uppnås av och till i befolkade områden men huvudsakligen nattetid.

Den tredje studien utnyttjar inversmodellering för att avgöra plymhöjd och gasutsläpp baserat på traversmätningar av plymen runt 80–240 km från utsläppskällan. Den beräknade källtermen resulterar i bättre överensstämmelse mellan modell- och satellitdata jämfört med enklare källtermer.

Arbetet i den här avhandlingen presenterar flertalet förbättringar för spridningsmodellering av vulkanutbrott genom bättre modeller, nogrannare beskrivning av källtermer, och genom nya metoder för tillämpning av olika typer av mätdata.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. p. 53
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1433
Keywords
dispersion modelling, atmospheric, volcano, gas emissions, volcanic ash, FLEXPART, FLEXPART-WRF, Spridningsmodellering, atmosfär, vulkan, gasutsläpp, vulkanaska, FLEXPART, FLEXPART-WRF
National Category
Meteorology and Atmospheric Sciences
Research subject
Meteorology
Identifiers
urn:nbn:se:uu:diva-303959 (URN)978-91-554-9704-0 (ISBN)
Public defence
2016-11-17, Axel Hambergssalen, Villavägen 16, Uppsala, 10:00 (English)
Opponent
Supervisors
Available from: 2016-10-27 Created: 2016-09-27 Last updated: 2016-11-02

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Dingwell, AdamRutgersson, Anna

Search in DiVA

By author/editor
Dingwell, AdamRutgersson, Anna
By organisation
LUVAL
In the same journal
Journal of Volcanology and Geothermal Research
Meteorology and Atmospheric SciencesGeosciences, Multidisciplinary

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1132 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf