Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Stable difference methods for block-oriented adaptive grids
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Tillämpad beräkningsvetenskap.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
2015 (Engelska)Ingår i: Journal of Scientific Computing, ISSN 0885-7474, E-ISSN 1573-7691, Vol. 65, s. 486-511Artikel i tidskrift (Refereegranskat) Published
Ort, förlag, år, upplaga, sidor
2015. Vol. 65, s. 486-511
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:uu:diva-234977DOI: 10.1007/s10915-014-9969-zISI: 000362911900003OAI: oai:DiVA.org:uu-234977DiVA, id: diva2:758564
Projekt
eSSENCETillgänglig från: 2014-12-18 Skapad: 2014-10-27 Senast uppdaterad: 2017-12-05Bibliografiskt granskad
Ingår i avhandling
1. Adaptive Solvers for High-Dimensional PDE Problems on Clusters of Multicore Processors
Öppna denna publikation i ny flik eller fönster >>Adaptive Solvers for High-Dimensional PDE Problems on Clusters of Multicore Processors
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Accurate numerical solution of time-dependent, high-dimensional partial differential equations (PDEs) usually requires efficient numerical techniques and massive-scale parallel computing. In this thesis, we implement and evaluate discretization schemes suited for PDEs of higher dimensionality, focusing on high order of accuracy and low computational cost.

Spatial discretization is particularly challenging in higher dimensions. The memory requirements for uniform grids quickly grow out of reach even on large-scale parallel computers. We utilize high-order discretization schemes and implement adaptive mesh refinement on structured hyperrectangular domains in order to reduce the required number of grid points and computational work. We allow for anisotropic (non-uniform) refinement by recursive bisection and show how to construct, manage and load balance such grids efficiently. In our numerical examples, we use finite difference schemes to discretize the PDEs. In the adaptive case we show how a stable discretization can be constructed using SBP-SAT operators. However, our adaptive mesh framework is general and other methods of discretization are viable.

For integration in time, we implement exponential integrators based on the Lanczos/Arnoldi iterative schemes for eigenvalue approximations. Using adaptive time stepping and a truncated Magnus expansion, we attain high levels of accuracy in the solution at low computational cost. We further investigate alternative implementations of the Lanczos algorithm with reduced communication costs.

As an example application problem, we have considered the time-dependent Schrödinger equation (TDSE). We present solvers and results for the solution of the TDSE on equidistant as well as adaptively refined Cartesian grids.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2014. s. 34
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1199
Nyckelord
adaptive mesh refinement, anisotropic refinement, exponential integrators, Lanczos' algorithm, hybrid parallelization, time-dependent Schrödinger equation
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Beräkningsvetenskap
Identifikatorer
urn:nbn:se:uu:diva-234984 (URN)978-91-554-9095-9 (ISBN)
Disputation
2014-12-12, Room 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:15 (Engelska)
Opponent
Handledare
Projekt
eSSENCEUPMARC
Tillgänglig från: 2014-11-21 Skapad: 2014-10-27 Senast uppdaterad: 2019-02-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Nissen, AnnaKormann, KatharinaGrandin, MagnusVirta, Kristoffer

Sök vidare i DiVA

Av författaren/redaktören
Nissen, AnnaKormann, KatharinaGrandin, MagnusVirta, Kristoffer
Av organisationen
Avdelningen för beräkningsvetenskapTillämpad beräkningsvetenskapNumerisk analys
I samma tidskrift
Journal of Scientific Computing
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 877 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf