uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High areal and volumetric capacity sustainable all-polymer paper-based supercapacitors
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.ORCID-id: 0000-0002-5496-9664
Vise andre og tillknytning
2014 (engelsk)Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 2, nr 39, s. 16761-16769Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

All-polymer paper-based electrodes with a thickness up to hundreds of micrometers (e.g. 290 mu m), large active mass loadings (>20 mg cm(-2)) and relatively high densities (1.23 g cm(-3)) can be straightforwardly obtained from pristine low-cost polypyrrole-cellulose composites by decreasing the porosity of the material via space engineering. By straightforward compression of the composites, compact capacitive storage devices with improved space utilization are obtained without significantly compromising the electrochemical performance of the devices. This indicates that the compression unlike other methods previously used to vary the porosity of these composites does not affect the distribution of the mesopores which mainly determines the electrochemical performance of the material. When used to manufacture green supercapacitors comprising entirely of environmentally friendly materials, the freestanding and binder-free porous yet dense electrodes yield an areal capacitance of 5.66 F cm(-2), a device volumetric energy density of 3.7 W h L-1 (based on the volume of the entire device) and the largest volumetric electrode capacitance of 236 F cm(-3) so far reported for conducting polymer-based electrodes. The presented results for symmetric supercapacitors containing aqueous electrolytes represent significant progress in the development of inexpensive and environmentally friendly high-performance paper-based energy storage devices.

sted, utgiver, år, opplag, sider
2014. Vol. 2, nr 39, s. 16761-16769
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
URN: urn:nbn:se:uu:diva-236671DOI: 10.1039/c4ta03724cISI: 000342880200056OAI: oai:DiVA.org:uu-236671DiVA, id: diva2:764945
Tilgjengelig fra: 2014-11-20 Laget: 2014-11-20 Sist oppdatert: 2017-12-05
Inngår i avhandling
1. On the electrochemical performance of energy storage devices composed of cellulose and conducting polymers
Åpne denne publikasjonen i ny fane eller vindu >>On the electrochemical performance of energy storage devices composed of cellulose and conducting polymers
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Applications that require electrical energy storage are becoming increasingly diverse. This development is caused by a number of factors, such as an increasing global energy demand, the advent of electric vehicles, the utilization of intermittent renewable energy sources, and advances in disposable and organic electronics. These applications will set different demands on their electrical energy storage and, thus, there will be no single technology used for all applications. For some applications the choice of energy storage materials will be extremely important. Conventional batteries and supercapacitors rely on the use of nonrenewable inorganic materials mined from depleting ores, hence, requiring large amounts of energy for their processing. Such materials also add a significant cost to the final product, making them less attractive for large scale applications. Conducting polymers, on the other hand, constitute a class of materials that can be used for organic matter based energy storage devices.

The aim of this thesis was to investigate the use of a composite consisting of the conducting polymer polypyrrole (PPy) and cellulose derived from Cladophora sp. algae for electrical energy storage. The polymer was coated onto the cellulose fibers by chemical polymerization resulting in a flexible material with high surface area. By using this composite as electrodes, electrochemical cells consisting of disposable and non-toxic materials can be assembled and used as energy storage devices. The resistances of these prototype cells were found to be dominated by the resistance of the current collectors and to scale with the thickness of the separator, and can hence be reduced by cell design. By addition of nanostructured PPy, the weight ratio of PPy in the composite could be increased, and the cell voltages could be enhanced by using a carbonized negative electrode. Composites of cellulose and poly(3,4-ethylenedioxythiophene) could also be synthesized and used as electrode materials. The porosities of the electrodes were controlled by mechanical compression of the composite or by coating of surface modified cellulose fibers with additional PPy. Finally, the self-discharge was studied extensively. It was found that oxygen was responsible for the oxidation of the negative electrode, while the rate of self-discharge of the positive electrode increases with increasing potential. Through measurements of the charge prior to and after self-discharge, as well as with an electrochemical quartz crystal microbalance, it was found that the self-discharge of the positive electrode was linked to an exchange of the counter ions by hydroxide ions. It is also demonstrated that the self-discharge rate of a symmetric PPy based device can be decreased dramatically by proper balancing of the electrode capacities and by reducing the oxygen concentration. The results of this work are expected to contribute towards future industrial implementation of electric energy storage devices based on organic materials.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2016. s. 64
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1403
Emneord
polypyrrole, supercapacitors, self-discharge
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-300917 (URN)978-91-554-9651-7 (ISBN)
Eksternt samarbeid:
Disputas
2016-09-30, Å80121, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2016-09-09 Laget: 2016-08-16 Sist oppdatert: 2016-09-13

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Wang, ZhaohuiTammela, PetterZhang, PengStrömme, MariaNyholm, Leif

Søk i DiVA

Av forfatter/redaktør
Wang, ZhaohuiTammela, PetterZhang, PengStrömme, MariaNyholm, Leif
Av organisasjonen
I samme tidsskrift
Journal of Materials Chemistry A

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1434 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf