uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of dielectric properties of HTCC alumina for realization of plasma sources
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. (ÅSTC)ORCID-id: 0000-0003-0832-1848
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
2015 (Engelska)Ingår i: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 44, nr 10, s. 3654-3660Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

As the sensitivity of optogalvanic spectroscopy based on prototype microplasma sources increases, contamination from composite materials in the printed circuit board used starts to become a concern. In this paper, a transfer to high-temperature cofired alumina and platinum is made and evaluated. The high-purity alumina provides an inert plasma environment, and allows for temperatures above 1000A degrees C, which is beneficial for future integration of a combustor. To facilitate the design of high-end plasma sources, characterization of the radio frequency (RF) parameters of the materials around 2.6 GHz is carried out. A RF resonator structure was fabricated in both microstrip and stripline configurations. These resonators were geometrically and electrically characterized, and epsilon (r) and tan were calculated using the RF waveguide design tool Wcalc. The resulting epsilon (r) for the microstrip and stripline was found to be 10.68 (+/- 0.12) and 9.65 (+/- 0.14), respectively. The average tan of all devices was found to be 0.0011 (+/- 0.0007). With these parameters, a series of proof-of-concept plasma sources were fabricated and evaluated. Some problems in the fabrication stemmed from the lamination and difficulties with the screen-printing, but a functioning plasma source was demonstrated.

Ort, förlag, år, upplaga, sidor
2015. Vol. 44, nr 10, s. 3654-3660
Nationell ämneskategori
Keramteknik Teknik och teknologier Fysik
Forskningsämne
Teknisk fysik med inriktning mot mikrosystemteknik
Identifikatorer
URN: urn:nbn:se:uu:diva-251300DOI: 10.1007/s11664-015-3901-7ISI: 000360672900061OAI: oai:DiVA.org:uu-251300DiVA, id: diva2:805289
Forskningsfinansiär
RymdstyrelsenKnut och Alice Wallenbergs StiftelseTillgänglig från: 2015-04-15 Skapad: 2015-04-15 Senast uppdaterad: 2017-12-04Bibliografiskt granskad
Ingår i avhandling
1. Miniature Plasma Sources for High-Precision Molecular Spectroscopy in Planetary Exploration
Öppna denna publikation i ny flik eller fönster >>Miniature Plasma Sources for High-Precision Molecular Spectroscopy in Planetary Exploration
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The prospect of finding life outside Earth has fascinated mankind for ages, and new technology continuously pushes the boundary of how remote and how obscure evidence we can find. Employing smaller, or completely new, types of landers and robots, and equipping them with miniature instruments would indeed revolutionize exploration of other planets and moons.

In this thesis, microsystems technology is used to create a miniature high-precision isotope-resolving molecular spectrometer utilizing the optogalvanic effect. The heart of the instrument, as well as this thesis, is a microplasma source.

The plasma source is a split-ring resonator, chosen for its simplicity, pressure range and easily accessible plasma, and modified to fit the challenging application, e.g., by the adding of an additional ground plane for improved electromagnetic shielding, and the integration of microscopic plasma probes to extract the pristine optogalvanic signal.

Plasma sources of this kind have been manufactured in both printed circuit board and alumina, the latter for its chemical inertness and for compatibility with other devices in a total analysis system. From previous studies, classical optogalvanic spectroscopy (OGS), although being very sensitive, is known to suffer from stability and reproducibility issues. In this thesis several studies were conducted to investigate and improve these shortcomings, and to improve the signal-to-noise ratio. Moreover, extensive work was put into understanding the underlying physics of the technique.

The plasma sources developed here, are the first ever miniature devices to be used in OGS, and exhibits several benefits compared to traditional solutions. Furthermore, it has been confirmed that OGS scales well with miniaturization. For example, the signal strength does not decrease as the volume is reduced like in regular absorption spectroscopy. Moreover, the stability and reproducibility are greatly increased, in some cases as much as by two orders of magnitude, compared with recent studies made on a classical OGS setup. The signal-to-noise ratio has also been greatly improved, e.g., by enclosing the sample cell and by biasing the plasma. Another benefit of a miniature sample cell is the miniscule amount of sample it requires, which can be important in many applications where only small amounts of sample are available.

To conclude: With this work, an important step toward a miniature, yet highly performing, instrument for detection of extraterrestrial life, has been taken.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2015. s. 53
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1253
Nyckelord
MEMS, MST, Optogalvanic Spectroscopy, Molecular Spectroscopy, Split-Ring Resonator, Microplasma
Nationell ämneskategori
Fysik Teknik och teknologier
Forskningsämne
Teknisk fysik med inriktning mot mikrosystemteknik
Identifikatorer
urn:nbn:se:uu:diva-251315 (URN)978-91-554-9245-8 (ISBN)
Disputation
2015-06-05, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2015-05-11 Skapad: 2015-04-15 Senast uppdaterad: 2015-07-07

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Berglund, MartinPersson, AndersThornell, Greger

Sök vidare i DiVA

Av författaren/redaktören
Berglund, MartinPersson, AndersThornell, Greger
Av organisationen
Mikrosystemteknik
I samma tidskrift
Journal of Electronic Materials
KeramteknikTeknik och teknologierFysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1585 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf