uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the assessment of CIGS surface passivation by photoluminescence
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Show others and affiliations
2015 (English)In: Physica Status Solidi. Rapid Research Letters, ISSN 1862-6254, E-ISSN 1862-6270, Vol. 9, no 5, p. 288-292Article in journal (Refereed) Published
Abstract [en]

An optimized test structure to study rear surface passivation in Cu(In,Ga)Se-2 (CIGS) solar cells by means of photoluminescence (PL) is developed and tested. The structure - illustrated in the abstract figure - is examined from the rear side. To enable such rear PL assessment, a semi-transparent ultrathin Mo layer has been developed and integrated in place of the normal rear contact. The main advantages of this approach are (i) a simplified representation of a rear surface passivated CIGS solar cell is possible, (ii) it is possible to assess PL responses originating close to the probed rear surface, and (iii) a stable PL response as a function of air exposure time is obtained. In this work, PL measurements of such structures with and without rear surface passivation layers have been compared, and the measured improvement in PL intensity for the passivated structures is associated with enhanced CIGS rear interface properties. [GRAPHICS] Transmission electron microscope (TEM) bright field cross-section image of the rear illuminated test structure fabricated for PL characterization.

Place, publisher, year, edition, pages
2015. Vol. 9, no 5, p. 288-292
Keywords [en]
solar cells, thin films, CuInGaSe2, surface passivation, photoluminescence
National Category
Environmental Engineering Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-256541DOI: 10.1002/pssr.201510081ISI: 000354888300002OAI: oai:DiVA.org:uu-256541DiVA, id: diva2:826391
Available from: 2015-06-25 Created: 2015-06-24 Last updated: 2018-08-12Bibliographically approved
In thesis
1. The Multiple Faces of Interfaces: Electron microscopy analysis of CuInSe2 thin-film solar cells
Open this publication in new window or tab >>The Multiple Faces of Interfaces: Electron microscopy analysis of CuInSe2 thin-film solar cells
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The CIS solar cell family features both a high stability and world-class performances. They can be deposited on a wide variety of substrates and absorb the entire solar spectrum only using a thickness of a few micrometers. These particularities allow them to feature the most positive Energy returned on energy invested (EROI) values and the shortest Energy payback times (EPBT) of all the main photovoltaic solar cells. Using mainly electron microscopy characterization techniques, this thesis has explored the questions related to the interface control in thin-film photovoltaic solar cells based on CuInSe2 (CIS) absorber materials. Indeed, a better understanding of the interfaces is essential to further improve the solar cell conversion efficiency (currently around 23%), but also to introduce alternative substrates, to implement various alloying (Ga-CIS (CIGS), Ag-CIGS (ACIGS)…) or even to assess alternative buffer layers.

The thread of this work is the understanding and the improvement of the interface control. To do so, the passivation potential of Al2O3 interlayers has been studied in one part of the thesis. While positive changes were generally measured, a subsequent analysis has revealed that a detrimental interaction could occur between the NaF precursor layer and the rear Al2O3 passivation layer. Still within the passivation research field, incorporation of various alkali-metals to the CIS absorber layer has been developed and analyzed. Large beneficial effects were ordinarily reported. However, similar KF-post deposition treatments were shown to be potentially detrimental for the silver-alloyed CIGS absorber layer. Finally, part of this work dealt with the limitations of the thin-barrier layers usually employed when using steel substrates instead of soda-lime glass ones. The defects and their origin could have been related to the steel manufacturing process, which offered solutions to erase them.

Electron microscopy, especially Transmission electron microscopy (TEM), was essential to scrutinize the local changes occurring at the different interfaces within a few nanometers. The composition variation was measured with both Electron energy loss spectroscopy (EELS) and Energy dispersive X-ray spectroscopy (EDS) techniques. Finally, efforts have been invested in controlling and improving the FIB sample preparation, which was required for the TEM observations in our case.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. p. 85
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1701
Keywords
Electron microscopy, TEM, STEM, EELS, EDS, solar cells, CIGS, ACIGS, CZTS, post deposition treatment, KF, RbF, buffer layers, interfaces, inter layers, barrier layers, passivation layers
National Category
Energy Systems Other Electrical Engineering, Electronic Engineering, Information Engineering Other Materials Engineering
Research subject
Engineering Science with specialization in Materials Science; Engineering Science with specialization in Electronics
Identifiers
urn:nbn:se:uu:diva-357127 (URN)978-91-513-0402-1 (ISBN)
Public defence
2018-09-28, Polhemssalen, The Angstrom laboratory, Lägerhyddsvägen 1, Uppsala, 09:30 (English)
Opponent
Supervisors
Available from: 2018-09-07 Created: 2018-08-12 Last updated: 2018-09-07

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Joel, JonathanVermang, BartLarsen, JesDonzel-Gargand, OlivierEdoff, Marika

Search in DiVA

By author/editor
Joel, JonathanVermang, BartLarsen, JesDonzel-Gargand, OlivierEdoff, Marika
By organisation
Solid State Electronics
In the same journal
Physica Status Solidi. Rapid Research Letters
Environmental EngineeringPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 859 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf