uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Acute Toxicity-Supported Chronic Toxicity Prediction: A k-Nearest Neighbor Coupled Read-Across Strategy
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
2015 (Engelska)Ingår i: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 16, nr 5, s. 11659-11677Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A k-nearest neighbor (k-NN) classification model was constructed for 118 RDT NEDO (Repeated Dose Toxicity New Energy and industrial technology Development Organization; currently known as the Hazard Evaluation Support System (HESS)) database chemicals, employing two acute toxicity (LD50)-based classes as a response and using a series of eight PaDEL software-derived fingerprints as predictor variables. A model developed using Estate type fingerprints correctly predicted the LD50 classes for 70 of 94 training set chemicals and 19 of 24 test set chemicals. An individual category was formed for each of the chemicals by extracting its corresponding k-analogs that were identified by k-NN classification. These categories were used to perform the read-across study for prediction of the chronic toxicity, i.e., Lowest Observed Effect Levels (LOEL). We have successfully predicted the LOELs of 54 of 70 training set chemicals (77%) and 14 of 19 test set chemicals (74%) to within an order of magnitude from their experimental LOEL values. Given the success thus far, we conclude that if the k-NN model predicts LD50 classes correctly for a certain chemical, then the k-analogs of such a chemical can be successfully used for data gap filling for the LOEL. This model should support the in silico prediction of repeated dose toxicity.

Ort, förlag, år, upplaga, sidor
2015. Vol. 16, nr 5, s. 11659-11677
Nyckelord [en]
k-nearest neighbor, classification model, Estate fingerprint, LD50, LOEL, read-across, category formation
Nationell ämneskategori
Biokemi och molekylärbiologi
Identifikatorer
URN: urn:nbn:se:uu:diva-258545DOI: 10.3390/ijms160511659ISI: 000356241400146PubMedID: 26006240OAI: oai:DiVA.org:uu-258545DiVA, id: diva2:841950
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 238701Tillgänglig från: 2015-07-15 Skapad: 2015-07-15 Senast uppdaterad: 2017-12-04Bibliografiskt granskad

Open Access i DiVA

fulltext(851 kB)411 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 851 kBChecksumma SHA-512
10998ede130035e5762270914d89dc577d596b39198aac16aefa1dec012572bb93197bb8a246689cca74788e7748df0df8c507908c60791b0c00f0e12f927128
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Nicholls, Ian A.

Sök vidare i DiVA

Av författaren/redaktören
Nicholls, Ian A.
Av organisationen
Fysikalisk-organisk kemi
I samma tidskrift
International Journal of Molecular Sciences
Biokemi och molekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 411 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 886 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf