uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Complete kinetic mechanism for recycling of the bacterial ribosome
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Struktur- och molekylärbiologi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Struktur- och molekylärbiologi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Struktur- och molekylärbiologi.
2016 (engelsk)Inngår i: RNA: A publication of the RNA Society, ISSN 1355-8382, E-ISSN 1469-9001, Vol. 22, nr 1, s. 10-21Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

How EF-G and RRF act together to split a post-termination ribosomal complex into its subunits has remained obscure. Here, using stopped-flow experiments with Rayleigh light scattering detection and quench-flow experiments with radio-detection of GTP hydrolysis, we have clarified the kinetic mechanism of ribosome recycling and obtained precise estimates of its kinetic parameters. Ribosome splitting requires that EF-G binds to an already RRF-containing ribosome. EF-G binding to RRF-free ribosomes induces futile rounds of GTP hydrolysis and inhibits ribosome splitting, implying that while RRF is purely an activator of recycling, EF-G acts as both activator and competitive inhibitor of RRF in recycling of the post-termination ribosome. The ribosome splitting rate and the number of GTPs consumed per splitting event depend strongly on the free concentrations of EF-G and RRF. The maximal recycling rate, here estimated as 25 sec(-1), is approached at very high concentrations of EF-G and RRF with RRF in high excess over EF-G. The present in vitro results, suggesting an in vivo ribosome recycling rate of 5 sec(-1), are discussed in the perspective of rapidly growing bacterial cells.

sted, utgiver, år, opplag, sider
2016. Vol. 22, nr 1, s. 10-21
Emneord [en]
bacterial ribosome recycling; elongation factor G; ribosome recycling factor; translation rate optimization; protein synthesis
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-258988DOI: 10.1261/rna.053157.115ISI: 000368967600002PubMedID: 26527791OAI: oai:DiVA.org:uu-258988DiVA, id: diva2:844274
Forskningsfinansiär
Swedish Research CouncilKnut and Alice Wallenberg FoundationTilgjengelig fra: 2015-08-04 Laget: 2015-07-23 Sist oppdatert: 2017-12-04bibliografisk kontrollert
Inngår i avhandling
1. Mechanisms and Inhibition of EF-G-dependent Translocation and Recycling of the Bacterial Ribosome
Åpne denne publikasjonen i ny fane eller vindu >>Mechanisms and Inhibition of EF-G-dependent Translocation and Recycling of the Bacterial Ribosome
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The GTPase elongation factor G (EF-G) is an important player in the complex process of protein synthesis by bacterial ribosomes. Although extensively studied much remains to be learned about this fascinating protein. In the elongation phase, after incorporation of each amino acid into the growing peptide chain, EF-G translocates the ribosome along the mRNA template. In the recycling phase, when the synthesis of a protein has been completed, EF-G, together with ribosome recycling factor (RRF), splits the ribosome into its subunits. We developed the first in vitro assay for measuring the average time of a complete translocation step at any position along the mRNA. Inside the open reading frame, at saturating EF-G concentration and low magnesium ion concentration, translocation rates were fast and compatible with elongation rates observed in vivo. We also determined the complete kinetic mechanism for EF-G- and RRF-dependent splitting of the post-termination ribosome. We showed that splitting occurs only when RRF binds before EF-G and that the rate and GTP consumption of the reaction varies greatly with the factor concentrations.

The antibiotic fusidic acid (FA) inhibits bacterial protein synthesis by binding to EF-G when the factor is ribosome bound, during translocation and ribosome recycling. We developed experimental methods and a theoretical framework for analyzing the effect of tight-binding inhibitors like FA on protein synthesis. We found that FA targets three different states during each elongation cycle and that it binds to EF-G on the post-termination ribosome both in the presence and absence of RRF. The stalling time of an FA-inhibited ribosome is about hundred-fold longer than the time of an uninhibited elongation cycle and therefore each binding event has a large impact on the protein synthesis rate and may induce queuing of ribosomes on the mRNA. Although ribosomes in the elongation and the recycling phases are targeted with similar efficiency, we showed that the main effect of FA in vivo is on elongation. Our results may serve as a basis for modelling of EF-G function and FA inhibition inside the living cell and for structure determination of mechanistically important intermediate states in translocation and ribosome recycling.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2015. s. 60
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1268
Emneord
Protein synthesis, Elongation factor G, Translocation, Ribosome recycling, Fusidic acid
HSV kategori
Forskningsprogram
Biologi med inriktning mot molekylär bioteknik
Identifikatorer
urn:nbn:se:uu:diva-258990 (URN)978-91-554-9289-2 (ISBN)
Disputas
2015-09-25, B22, BMC, Husargatan 3, Uppsala, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2015-09-04 Laget: 2015-07-23 Sist oppdatert: 2015-10-01

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Borg, AnneliPavlov, MichaelEhrenberg, Måns

Søk i DiVA

Av forfatter/redaktør
Borg, AnneliPavlov, MichaelEhrenberg, Måns
Av organisasjonen
I samme tidsskrift
RNA: A publication of the RNA Society

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 1273 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf