uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Protein Desalination Chip for Mass Spectrometry Sample Preparation
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
(3Dept. Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742, KOREA)
Show others and affiliations
2015 (English)Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

This work focuses on desalination of a protein sample in a lab-on-chip device using the ion concentration polarization (ICP) technique. It was demonstrated with a salt containing buffer with four proteins and two peptides of concentrations typical to cerebrospinal fluid (CSF). Not only was the output desalinated but its protein concentration with large molecular weight (MW) was as much as 3 times higher for the largest protein compared to the original. We conclude that ICP based microfluidic chips have great potential for desalination and protein concentration in microdialysis sampling coupled to mass spectroscopy (MS).

Place, publisher, year, edition, pages
MicroTAS, 2015.
Keyword [en]
Ion concentration polarization, Desalination, Protein, Mass spectroscopy
National Category
Nano Technology
Research subject
Engineering Science with specialization in Microsystems Technology; Engineering Science with specialization in Materials Science
Identifiers
URN: urn:nbn:se:uu:diva-261067OAI: oai:DiVA.org:uu-261067DiVA: diva2:849551
Conference
The 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2015. October 25-29, 2015. Gyeongju, Korea.
Available from: 2015-08-28 Created: 2015-08-28 Last updated: 2016-01-05
In thesis
1. Microdialysis Sampling of Macro Molecules: Fluid Characteristics, Extraction Efficiency and Enhanced Performance
Open this publication in new window or tab >>Microdialysis Sampling of Macro Molecules: Fluid Characteristics, Extraction Efficiency and Enhanced Performance
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, fluid characteristics and sampling efficiency of high molecular weight cut-off microdialysis are presented, with the aim of improving the understanding of microdialysis sampling mechanisms and its performance regarding extraction efficiency of biological fluid and biomarkers.

Microdialysis is a well-established clinical sampling tool for monitoring small biomarkers such as lactate and glucose. In recent years, interest has raised in using high molecular weight cut-off microdialysis to sample macro molecules such as neuropeptides, cytokines and proteins. However, with the increase of the membrane pore size, high molecular weight cut-off microdialysis exhibits drawbacks such like unstable catheter performance, imbalanced fluid recovery, low and unstable molecule extraction efficiency, etc. But still, the fluid characteristics of high molecular weight cut-off microdialysis is rarely studied, and the clinical or in vitro molecule sampling efficiency from recent studies vary from each other and are difficult to compare.  

Therefore, in this thesis three aspects of high molecular weight cut-off microdialysis have been explored. The first, the fluid characteristics of large pore microdialysis has been investigated, theoretically and experimentally. The results suggest that the experimental fluid recovery is in consistency with its theoretical formula. The second, the macromolecule transport behaviour has been visualized and semi-quantified, using an in vitro test system and fluorescence imaging. The third, two in vitro tests have been done to mimic in vivo cerebrospinal fluid sampling under pressurization, using native and differently surface modified catheters. As results, individual protein/peptide extraction efficiencies were achieved, using targeted mass spectrometry analysis.

In summary, a theory system of the fluid characteristics of high molecular weight cut-off microdialysis has been built and testified; Macromolecular transport of microdialysis catheter has been visualized; In vivo biomolecules sampling has been simulated by well-defined in vitro studies; Individual biomolecular extraction efficiency has been shown; Different surface modifications of microdialysis catheter have been investigated. It was found that, improved sampling performance can be achieved, in terms of balanced fluid recovery and controlled protein extraction efficiency.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 52 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1278
Keyword
microdialysis, high molecular weight cut-off, fluid characteristics, fluid recovery, extraction efficiency, biomarker, microporous membrane, macromolecule transport, transmembrane, large pore, surface modification, pluronic, dextran, in vitro, microdialysis catheter
National Category
Manufacturing, Surface and Joining Technology Nano Technology
Research subject
Engineering Science with specialization in Microsystems Technology; Engineering Science with specialization in Materials Science
Identifiers
urn:nbn:se:uu:diva-261068 (URN)978-91-554-9315-8 (ISBN)
Public defence
2015-10-16, Polhem Salen, Angstrom Laboratory, Uppsala, 09:15 (English)
Opponent
Supervisors
Funder
Berzelii Centre EXSELENT
Available from: 2015-09-25 Created: 2015-08-28 Last updated: 2015-10-01

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Chu, JiangtaoUndin, TorgnyDahlin, AndreasHjort, Klas
By organisation
Microsystems TechnologyAnalytical Chemistry
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

Total: 1370 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf