uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated CT-based segmentation and quantification of total intracranial volume
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: European Radiology, ISSN 0938-7994, E-ISSN 1432-1084, Vol. 25, nr 11, s. 3151-3160Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

OBJECTIVES: To develop an algorithm to segment and obtain an estimate of total intracranial volume (tICV) from computed tomography (CT) images.

MATERIALS AND METHODS: Thirty-six CT examinations from 18 patients were included. Ten patients were examined twice the same day and eight patients twice six months apart (these patients also underwent MRI). The algorithm combines morphological operations, intensity thresholding and mixture modelling. The method was validated against manual delineation and its robustness assessed from repeated imaging examinations. Using automated MRI software, the comparability with MRI was investigated. Volumes were compared based on average relative volume differences and their magnitudes; agreement was shown by a Bland-Altman analysis graph.

RESULTS: We observed good agreement between our algorithm and manual delineation of a trained radiologist: the Pearson's correlation coefficient was r = 0.94, tICVml[manual] = 1.05 × tICVml[automated] - 33.78 (R(2) = 0.88). Bland-Altman analysis showed a bias of 31 mL and a standard deviation of 30 mL over a range of 1265 to 1526 mL.

CONCLUSIONS: tICV measurements derived from CT using our proposed algorithm have shown to be reliable and consistent compared to manual delineation. However, it appears difficult to directly compare tICV measures between CT and MRI.

KEY POINTS: • Automated estimation of tICV is in good agreement with manual tracing. • Consistent tICV estimations from repeated measurements demonstrate the robustness of the algorithm. • Automatically segmented volumes seem less variable than those from manual tracing. • Unbiased and automated tlCV estimation is possible from CT.

Ort, förlag, år, upplaga, sidor
2015. Vol. 25, nr 11, s. 3151-3160
Nyckelord [en]
Computed tomography; Magnetic resonance imaging; Maximum likelihood estimator; Skull stripping; Total intracranial volume
Nationell ämneskategori
Radiologi och bildbehandling
Identifikatorer
URN: urn:nbn:se:uu:diva-265152DOI: 10.1007/s00330-015-3747-7ISI: 000362518200005PubMedID: 25875287OAI: oai:DiVA.org:uu-265152DiVA, id: diva2:862623
Forskningsfinansiär
Svenska läkaresällskapetTillgänglig från: 2015-10-23 Skapad: 2015-10-23 Senast uppdaterad: 2017-12-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Larsson, Elna-Marie

Sök vidare i DiVA

Av författaren/redaktören
Larsson, Elna-Marie
Av organisationen
Radiologi
I samma tidskrift
European Radiology
Radiologi och bildbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 1035 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf