uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
First Passage Percolation on \(\mathbb {Z}^2\): A Simulation Study
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och sannolikhetsteori.
Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden..
2015 (Engelska)Ingår i: Journal of statistical physics, ISSN 0022-4715, E-ISSN 1572-9613, Vol. 161, nr 3, s. 657-678Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

First passage percolation on is a model for describing the spread of an infection on the sites of the square lattice. The infection is spread via nearest neighbor sites and the time dynamic is specified by random passage times attached to the edges. In this paper, the speed of the growth and the shape of the infected set is studied by aid of large-scale computer simulations, with focus on continuous passage time distributions. It is found that the most important quantity for determining the value of the time constant, which indicates the inverse asymptotic speed of the growth, is , where are i.i.d. passage time variables. The relation is linear for a large class of passage time distributions. Furthermore, the directional time constants are seen to be increasing when moving from the axis towards the diagonal, so that the limiting shape is contained in a circle with radius defined by the speed along the axes. The shape comes closer to the circle for distributions with larger variability.

Ort, förlag, år, upplaga, sidor
2015. Vol. 161, nr 3, s. 657-678
Nyckelord [en]
First passage percolation, Growth model, Time constant, Asymptotic shape, Computer simulation
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:uu:diva-266689DOI: 10.1007/s10955-015-1356-0ISI: 000362738300007OAI: oai:DiVA.org:uu-266689DiVA, id: diva2:868915
Tillgänglig från: 2015-11-12 Skapad: 2015-11-10 Senast uppdaterad: 2017-12-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Alm, Sven Erick

Sök vidare i DiVA

Av författaren/redaktören
Alm, Sven Erick
Av organisationen
Analys och sannolikhetsteori
I samma tidskrift
Journal of statistical physics
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 725 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf