uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Galvanostatic ion de-trapping rejuvenates oxide thin films
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, nr 48, s. 26387-26390Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Ion trapping under charge insertion-extraction is well-known to degrade the electrochemical performance of oxides. Galvano-static treatment was recently shown capable to rejuvenate the oxide, but the detailed mechanism remained uncertain. Here we report on amorphous electrochromic (EC) WO3 thin films prepared by sputtering and electrochemically cycled in a lithium-containing electrolyte under conditions leading to severe loss of charge exchange capacity and optical modulation span. Time-of-flight elastic recoil detection analysis (ToF-ERDA) documented pronounced Li+ trapping associated with the degradation of the EC properties and, importantly, that Li+ detrapping, caused by a weak constant current drawn through the film for some time, could recover the original EC performance. Thus, ToF-ERDA provided direct and unambiguous evidence for Li+ detrapping.

Ort, förlag, år, upplaga, sidor
2015. Vol. 7, nr 48, s. 26387-26390
Nationell ämneskategori
Annan materialteknik Atom- och molekylfysik och optik Teknik och teknologier
Forskningsämne
Teknisk fysik med inriktning mot fasta tillståndets fysik
Identifikatorer
URN: urn:nbn:se:uu:diva-267134DOI: 10.1021/acsami.5b09430ISI: 000366339100006PubMedID: 26599729OAI: oai:DiVA.org:uu-267134DiVA, id: diva2:872274
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 267234Tillgänglig från: 2015-11-18 Skapad: 2015-11-18 Senast uppdaterad: 2018-08-30Bibliografiskt granskad
Ingår i avhandling
1. Electrochromism in Metal Oxide Thin Films: Towards long-term durability and materials rejuvenation
Öppna denna publikation i ny flik eller fönster >>Electrochromism in Metal Oxide Thin Films: Towards long-term durability and materials rejuvenation
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Electrochromic thin films can effectively regulate the visible and infrared light passing through a window, demonstrating great potential to save energy and offer a comfortable indoor environment in buildings. However, long-term durability is a big issue and the physics behind this is far from clear. This dissertation work concerns two important parts of an electrochromic window: the anodic and cathodic layers. In particular, work focusing on the anodic side develop a new Ni oxide based layers and uncover degradation dynamics in Ni oxide thin films; and work focusing on the cathodic side addresses materials rejuvenation with the aim to eliminate degradation.

In the first part of this dissertation work, iridium oxide is found to be compatible with acids, bases and Li+-containing electrolytes, and an anodic layer with very superior long-term durability was developed by incorporating of small amount (7.6 at. %) of Ir into Ni oxide. This film demonstrated sustained cycle-dependent growth of charge density and electrochromic modulation even after 10,000 CV cycles. The (111) and (100) crystal facets in Ni oxide are found to possess different abilities to absorb cation and/or anion, which yields different degrees of coloration and this is very significant for the electrochromic properties. The degradation of charge capacity in Ni oxide has an inevitable rapid decay in the first hundreds of cycles, subsequently combined with a more gradual decay, which is independent of applied potential and film composition. The consistent phenomenon can be very well modeled by power-law or stretched exponential decay; however the two models are indistinguishable in the current stage. Interestingly, in both models, the power-law exponent is 0.2 ≤ p ≤ 0.8, with most of the values around 0.5, in line with normal or anomalous diffusion models.

The second part of dissertation work deals with cathodic WO3 and TiO2. WO3 suffers from ion trapping induced degradation of charge capacity and optical modulation upon electrochemical cycling. This speculation is strongly supported by direct evidence from Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA). Most importantly, this ion trapping induced degradation can be eliminated by a galvanostatic de-trapping process. Significant ion-trapping takes place when x exceeds ~0.65 in LixWO3. The trapped ions are stable in the host structure, meaning that the ions cannot de-trap without external stimuli. The similar work done on TiO2 significantly complements and extends the work on the recuperation of WO3; the difference is that the trapped ions in host TiO2 seem to be less stable compared with the trapped ions in WO3.

    Overall, this dissertation presents a refined conceptual framework for developing superior electrochromic windows in energy efficient buildings.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2015. s. 86
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1323
Nyckelord
electrochromic, smart windows, long-term durability, degradation kinetics, ion trapping, de-trapping, materials rejuvenation
Nationell ämneskategori
Nanoteknik Den kondenserade materiens fysik Materialteknik Energisystem Kompositmaterial och -teknik
Forskningsämne
Teknisk fysik med inriktning mot fasta tillståndets fysik
Identifikatorer
urn:nbn:se:uu:diva-267111 (URN)978-91-554-9421-6 (ISBN)
Disputation
2016-01-14, Polhemalen, Ångströmlaboratoriet, Lägerhyddsv. 1, Uppsala, 13:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
EU, Europeiska forskningsrådet
Tillgänglig från: 2015-12-14 Skapad: 2015-11-18 Senast uppdaterad: 2016-01-28

Open Access i DiVA

fulltext(689 kB)281 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 689 kBChecksumma SHA-512
4576b8a6151a3823365639482ad7ec729b37eae1ab3b4bc7671d34b8d2ac4771b0de53ae6e841a04756f67a06638fc0bb01e242049da2928034622605f3f61b7
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Arvizu, MiguelWen, Rui-TaoPrimetzhofer, DanielNiklasson, Gunnar A.Granqvist, Claes-Göran

Sök vidare i DiVA

Av författaren/redaktören
Arvizu, MiguelWen, Rui-TaoPrimetzhofer, DanielNiklasson, Gunnar A.Granqvist, Claes-Göran
Av organisationen
Fasta tillståndets fysikTillämpad kärnfysik
I samma tidskrift
ACS Applied Materials and Interfaces
Annan materialteknikAtom- och molekylfysik och optikTeknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 281 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 1596 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf