uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Synthesis and Redox Properties of Thiophene Terephthalate Building Blocks for Low-Potential Conducting Redox Polymers
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanotechnology and Functional Materials)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Analytisk kemi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanoteknologi och funktionella material)ORCID-id: 0000-0002-5496-9664
Vise andre og tillknytning
2015 (engelsk)Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 119, nr 49, s. 27247-27254Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Terephthalate-substituted thiophene derivatives are promising redox-active components for anode materials in lithium-ion batteries. In this study, we present the synthesis of substituted 2-(thiophen-3-yl)terephthalate derivatives (TTDs) as suitable monomers for thiophene-based conducting redox polymers, along with their characterization by electrochemical and spectroscopic techniques. Density functional theory (DFT) calculations, utilizing the universal solvation model based on solute electron density (SMD), were used to predict both the first and the second reduction potentials of these TTDs. The computational results showed good agreement with the experimental data in nonaqueous acetonitrile solvent, with mean absolute errors of 30 and 40 mV for the first and second reduction steps, respectively. Time-dependent (TD) DFT calculations on TTDs indicated terephthalate local transitions at both 200 and 240 nm and charge-transfer transitions above 300 nm by examination of the involved molecular orbitals.

sted, utgiver, år, opplag, sider
2015. Vol. 119, nr 49, s. 27247-27254
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
URN: urn:nbn:se:uu:diva-268481DOI: 10.1021/acs.jpcc.5b08518ISI: 000366339000008OAI: oai:DiVA.org:uu-268481DiVA, id: diva2:877187
Forskningsfinansiär
Swedish Research Council, VR 621-2011-4423Swedish Foundation for Strategic Research Swedish Energy AgencyTilgjengelig fra: 2015-12-05 Laget: 2015-12-05 Sist oppdatert: 2017-12-01bibliografisk kontrollert
Inngår i avhandling
1. Terephthalate-Functionalized Conducting Redox Polymers for Energy Storage Applications
Åpne denne publikasjonen i ny fane eller vindu >>Terephthalate-Functionalized Conducting Redox Polymers for Energy Storage Applications
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Organic electrode materials, as sustainable and environmental benign alternatives to inorganic electrode materials, show great promise for achieving cheap, light, versatile and disposable devices for electrical energy storage applications. Conducting redox polymers (CRPs) are a new class of organic electrode materials where the charge storage capacity is provided by the redox chemistry of functional pendent groups and electronic conductivity is provided by the doped conducting polymer backbone, enabling the production of energy storage devices with high charge storage capacity and high power capability. This pendant-conducting polymer backbone combination can solve two of the main problems associated with organic molecule-based electrode materials, i.e. the dissolution of the active material and the sluggish charge transport within the material. In this thesis, diethyl terephthalate and polythiophenes were utilized as the pendant and the backbone, respectively. The choice of pendant-conducting polymer backbone combination was based on potential match between the two moieties, i.e. the redox reaction of terephthalate pendent groups and the n-doping of polythiophene backbone occur in the same potential region. The resulting CRPs exhibited fast charge transport within the polymer films and low activation energies involved charge propagation through these materials. In the design of these CRPs an unconjugated link between the pendant and the backbone was found to be advantageous in terms of the polymerizability of the monomers and for the preservation of individual redox activity of the pendants and the polymer chain in CRPs. The functionalized materials were specifically designed as anode materials for energy storage applications and, although insufficient cycling stability was observed, the work presented in this thesis demonstrates that the combination of redox active functional groups with conducting polymers, forming CRPs, shows promise for the development of organic matter-based electrical energy storage materials.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2016. s. 60
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1437
Emneord
conducting polymers, terephthalate, polythiophene, PEDOT, conductance
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-304628 (URN)978-91-554-9715-6 (ISBN)
Disputas
2016-11-24, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2016-11-08 Laget: 2016-10-06 Sist oppdatert: 2016-11-16
2. Conducting Redox Polymers for Electrode Materials: Synthetic Strategies and Electrochemical Properties
Åpne denne publikasjonen i ny fane eller vindu >>Conducting Redox Polymers for Electrode Materials: Synthetic Strategies and Electrochemical Properties
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Organic electrode materials represent an intriguing alternative to their inorganic counterparts due to their sustainable and environmental-friendly properties. Their plastic character allows for the realization of light-weight, versatile and disposable devices for energy storage. Conducting redox polymers (CRPs) are one type of the organic electrode materials involved, which consist of a π-conjugated polymer backbone and covalently attached redox units, the so-called pendant. The polymer backbone can provide conductivity while it is oxidized or reduced (i. e., p- or n-doped) and the concurrent redox chemistry of the pendant provides charge capacity. The combination of these two components enables CRPs to provide both high charge capacity and high power capability. This dyad polymeric framework provides a solution to the two main problems associated with organic electrode materials based on small molecules: the dissolution of the active material in the electrolyte, and the sluggish charge transport within the material. This thesis introduces a general synthetic strategy to obtain the monomeric CRPs building blocks, followed by electrochemical polymerization to afford the active CRPs material. The choice of pendant and of polymer backbone depends on the potential match between these two components, i.e. the redox reaction of the pendant and the doping of backbone occurring within the same potential region. In the thesis, terephthalate and polythiophene were selected as the pendant and polymer backbone respectively, to get access to low potential CRPs. It was found that the presence of a non-conjugated linker between polymer backbone and pendant is essential for the polymerizability of the monomers as well as for the preservation of individual redox activities. The resulting CRPs exhibited fast charge transport within the polymer film and low activation barriers for charge propagation. These low potential CRPs were designed as the anode materials for energy storage applications. The combination of redox active pendant as charge carrier and a conductive polymer backbone reveals new insights into the requirements of organic matter based electrical energy storage materials.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 83
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1604
Emneord
Organic electrode material, Energy storage, Conducting redox polymer, Polythiophene, Terephthalate, PEDOT
HSV kategori
Forskningsprogram
Kemi med inriktning mot organisk kemi
Identifikatorer
urn:nbn:se:uu:diva-334562 (URN)978-91-513-0168-6 (ISBN)
Disputas
2018-01-19, B41, BMC, Husargatan, Uppsala, 09:15 (engelsk)
Opponent
Veileder
Forskningsfinansiär
SweGRIDS - Swedish Centre for Smart Grids and Energy StorageSwedish Research CouncilSwedish Foundation for Strategic Research
Tilgjengelig fra: 2017-12-21 Laget: 2017-11-23 Sist oppdatert: 2018-03-08

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Huang, XiaoYang, LiBergquist, JonasStrömme, MariaGogoll, AdolfSjödin, Martin

Søk i DiVA

Av forfatter/redaktør
Huang, XiaoYang, LiBergquist, JonasStrömme, MariaGogoll, AdolfSjödin, Martin
Av organisasjonen
I samme tidsskrift
The Journal of Physical Chemistry C

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1109 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf