Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Identification of somatic variants by targeted sequencing of pooled cancer samples
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. (Syvänen)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. (Syvänen)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. (Syvänen)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. (Syvänen)
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Medical Genetics
Research subject
Medical Genetics
Identifiers
URN: urn:nbn:se:uu:diva-269752OAI: oai:DiVA.org:uu-269752DiVA, id: diva2:885114
Available from: 2015-12-18 Created: 2015-12-18 Last updated: 2018-08-27
In thesis
1. Genomic characterization of pediatric acute lymphoblastic leukemia by deep sequencing
Open this publication in new window or tab >>Genomic characterization of pediatric acute lymphoblastic leukemia by deep sequencing
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Acute Lymphoblastic Leukemia (ALL) is the most common cancer in children, with close to 200 cases per year in the Nordic countries. Despite recent advances in modern chemotherapies, 20% of the ALL patients experience a relapse. ALL has traditionally been stratified into subtypes with different risk classification and therapy using large genomic aberrations such as translocations and aneuploidies. In recent years technological advances have enabled the detection of smaller genetic variants, such as point mutations and small insertions/deletions. This thesis focuses on the detection of these smaller variants and their potential impact for ALL.

The present work includes four studies. In the first study we investigated the effects of whole genome amplification and non-indexed pooling strategies to maximize the output of targeted sequencing. We found that whole genome amplified DNA is equivalent to genomic DNA when screening for point mutations in targeted sequencing data. We were able to accurately detect variants in non-indexed pools with up to ten samples. The second study describes further work on non-indexed pools where we pooled samples in an overlapping scheme and identified carriers of rare variants. The third study describes the whole genome and RNA sequencing of four patients with ALL and validated the results in a cohort of 168 additional ALL patients. In the whole genome sequenced patients we found somatic mutations in both known cancer driver-genes (KRAS and NOTCH1) and in putative driver-genes (KMT2D and KIF1B) after analysis of the additional ALL patients. We validated point mutations genome-wide and observed a large number of C>A mutations in one patient, in contrast to C>T mutations that are more common in cancer in general. The fourth study analyzed the same cohort as the third study and expanded the target to 872 genes linked to cancer, ALL or epigenetic regulation recorded in the literature. We found distinctive differences between BCP-ALL and T-ALL both in number and types of mutations. In addition we observed an association between mutations in the Notch signaling pathway and relapse.

These results will have an impact on future studies of cancer, and add another piece to the genetic puzzle of ALL.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. p. 35
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1170
National Category
Medical Genetics
Identifiers
urn:nbn:se:uu:diva-269760 (URN)978-91-554-9444-5 (ISBN)
Public defence
2016-02-19, E10:1307-1309, Navet, BMC, Husargatan 3, Uppsala, Uppsala, 13:00 (English)
Opponent
Supervisors
Available from: 2016-01-26 Created: 2015-12-18 Last updated: 2018-01-10Bibliographically approved
2. Genetic Cartography at Massively Parallel Scale
Open this publication in new window or tab >>Genetic Cartography at Massively Parallel Scale
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Massively parallel sequencing (MPS) is revolutionizing genomics. In this work we use, refine, and develop new tools for the discipline.

MPS has led to the discovery of multiple novel subtypes in Acute Lymphoblastic Leukemia (ALL). In Study I we screen for fusion genes in 134 pediatric ALL patients, including patients without an assigned subtype. In approximately 80% of these patients we detect novel or known fusion gene families, most of which display distinct methylation and expression patterns. This shows the potential for improvements in the clinical stratification of ALL. Large sample sizes are important to detect recurrent somatic variation. In Study II we investigate if a non-index overlapping pooling schema can be used to increase sample size and detect somatic variation. We designed a schema for 172 ALL samples and show that it is possible to use this method to call somatic variants.

Around the globe there are many ongoing and completed genome projects. In Study III we sequenced the genome of 1000 Swedes to create a reference data set for the Swedish population. We identified more than 10 million variants that were not present in publicly available databases, highlighting the need for population-specific resources. Data, and the tools developed during this study, have been made publicly available as a resource for genomics in Sweden and abroad.

The increased amount of sequencing data has created a greater need for automation. In Study IV we present Arteria, a computational automation system for sequencing core facilities. This system has been adopted by multiple facilities and has been used to analyze thousands of samples. In Study V we developed CheckQC, a program that provides automated quality control of Illumina sequencing runs. These tools make scaling up MPS less labour intensive, a key to unlocking the full future potential of genomics.

The tools, and data presented here are a valuable contribution to the scientific community. Collectively they showcase the power of MPS and genomics to bring about new knowledge of human health and disease.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. p. 68
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1492
Keywords
Acute Lymphoblastic Leukemia (ALL), RNA-Sequencing, Bioinformatics, Pooling, Whole Genome Sequencing
National Category
Medical Genetics Cancer and Oncology Hematology Computer Systems Bioinformatics (Computational Biology)
Research subject
Medical Genetics; Bioinformatics
Identifiers
urn:nbn:se:uu:diva-358289 (URN)978-91-513-0428-1 (ISBN)
Public defence
2018-10-19, E10:1307-1309 (Trippelrummet), Navet, Biomedicinskt centrum, Husargatan 3, Uppsala, 09:00 (English)
Opponent
Supervisors
Available from: 2018-09-20 Created: 2018-08-27 Last updated: 2018-10-02

Open Access in DiVA

No full text in DiVA

Authority records

Lindqvist, Carl Mårten

Search in DiVA

By author/editor
Lindqvist, Carl Mårten
By organisation
Molecular MedicineScience for Life Laboratory, SciLifeLabDepartment of Women's and Children's Health
Medical Genetics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 267 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf