uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identification of sample annotation errors in gene expression datasets
TU Dortmund Univ, Dept Stat, D-44227 Dortmund, Germany..
TU Dortmund Univ, Dept Stat, D-44227 Dortmund, Germany..
Dortmund TU, Leibniz Res Ctr Working Environm & Human Factors, Dortmund, Germany..
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk och experimentell patologi.
Vise andre og tillknytning
2015 (engelsk)Inngår i: Archives of Toxicology, ISSN 0340-5761, E-ISSN 1432-0738, Vol. 89, nr 12, s. 2265-2272Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

The comprehensive transcriptomic analysis of clinically annotated human tissue has found widespread use in oncology, cell biology, immunology, and toxicology. In cancer research, microarray-based gene expression profiling has successfully been applied to subclassify disease entities, predict therapy response, and identify cellular mechanisms. Public accessibility of raw data, together with corresponding information on clinicopathological parameters, offers the opportunity to reuse previously analyzed data and to gain statistical power by combining multiple datasets. However, results and conclusions obviously depend on the reliability of the available information. Here, we propose gene expression-based methods for identifying sample misannotations in public transcriptomic datasets. Sample mix-up can be detected by a classifier that differentiates between samples from male and female patients. Correlation analysis identifies multiple measurements of material from the same sample. The analysis of 45 datasets (including 4913 patients) revealed that erroneous sample annotation, affecting 40 % of the analyzed datasets, may be a more widespread phenomenon than previously thought. Removal of erroneously labelled samples may influence the results of the statistical evaluation in some datasets. Our methods may help to identify individual datasets that contain numerous discrepancies and could be routinely included into the statistical analysis of clinical gene expression data.

sted, utgiver, år, opplag, sider
2015. Vol. 89, nr 12, s. 2265-2272
Emneord [en]
Gene expression, Microarray, Misannotation, Quality control, Male-female classifier
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-272120DOI: 10.1007/s00204-015-1632-4ISI: 000366155200007PubMedID: 26608184OAI: oai:DiVA.org:uu-272120DiVA, id: diva2:893188
Forskningsfinansiär
German Research Foundation (DFG), RA 870/4-1German Research Foundation (DFG), RA 870/5-1Swedish Cancer SocietyTilgjengelig fra: 2016-01-12 Laget: 2016-01-12 Sist oppdatert: 2018-02-01bibliografisk kontrollert

Open Access i DiVA

fulltext(741 kB)286 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 741 kBChecksum SHA-512
f6ae974521ccf3f4852f381e306ce5d7ecbc52672e1c3af188bdd20eb095effdb67a46187a43382c6e57660b0c9983ca08b42e6df0de170a371631d01b478c96
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Mattsson, Johanna S. M.Botling, JohanMicke, Patrick

Søk i DiVA

Av forfatter/redaktør
Mattsson, Johanna S. M.Botling, JohanMicke, Patrick
Av organisasjonen
I samme tidsskrift
Archives of Toxicology

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 286 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 661 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf