uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prediction impact curve is a new measure integrating intervention effects in the evaluation of risk models
Emory Univ, Rollins Sch Publ Hlth, Dept Epidemiol, Atlanta, GA 30322 USA..
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper, Molekylär epidemiologi. Karolinska Inst, Dept Med Epidemiol & Biostat, SE-17177 Stockholm, Swedden..
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper, Molekylär epidemiologi.ORCID-id: 0000-0003-2256-6972
Emory Univ, Rollins Sch Publ Hlth, Dept Epidemiol, Atlanta, GA 30322 USA.;Vrije Univ Amsterdam Med Ctr, EMGO Inst Hlth & Care Res, Sect Community Genet, Dept Clin Genet, NL-1007 MB Amsterdam, Netherlands..
2016 (Engelska)Ingår i: Journal of Clinical Epidemiology, ISSN 0895-4356, E-ISSN 1878-5921, Vol. 69, s. 89-95Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

Objective: We propose a new measure of assessing the performance of risk models, the area under the prediction impact curve (auPIC), which quantifies the performance of risk models in terms of their average health impact in the population. Study Design and Setting: Using simulated data, we explain how the prediction impact curve (PIC) estimates the percentage of events prevented when a risk model is used to assign high-risk individuals to an intervention. We apply the PIC to the Atherosclerosis Risk in Communities (ARIC) Study to illustrate its application toward prevention of coronary heart disease. Results: We estimated that if the ARIC cohort received statins at baseline, 5% of events would be prevented when the risk model was evaluated at a cutoff threshold of 20% predicted risk compared to 1% when individuals were assigned to the intervention without the use of a model. By calculating the auPIC, we estimated that an average of 15% of events would be prevented when considering performance across the entire interval. Conclusion: We conclude that the PIC is a clinically meaningful measure for quantifying the expected health impact of risk models that supplements existing measures of model performance.

Ort, förlag, år, upplaga, sidor
2016. Vol. 69, s. 89-95
Nyckelord [en]
Prediction impact curve, AUC, Risk model, Predictive model, Coronary heart disease, Predictive ability
Nationell ämneskategori
Arbetsmedicin och miljömedicin
Identifikatorer
URN: urn:nbn:se:uu:diva-274427DOI: 10.1016/j.jclinepi.2015.06.011ISI: 000367127600012PubMedID: 26119889OAI: oai:DiVA.org:uu-274427DiVA, id: diva2:896527
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, HEALTH-F4-2007-201413Vetenskapsrådet, 2012-1397Hjärt-Lungfonden, 20120197NIH (National Institute of Health), HHSN261201200425PEU, Europeiska forskningsrådet, 310884Tillgänglig från: 2016-01-21 Skapad: 2016-01-21 Senast uppdaterad: 2018-01-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Ingelsson, Erik

Sök vidare i DiVA

Av författaren/redaktören
Ingelsson, Erik
Av organisationen
Molekylär epidemiologi
I samma tidskrift
Journal of Clinical Epidemiology
Arbetsmedicin och miljömedicin

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 343 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf