uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sensory regeneration in dorsal root avulsion
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Regenerativ neurobiologi.
2015 (Engelska)Ingår i: Neural Regeneration Research, ISSN 1673-5374, E-ISSN 1876-7958, Vol. 10, nr 11, s. 1739-1740Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Ort, förlag, år, upplaga, sidor
2015. Vol. 10, nr 11, s. 1739-1740
Nationell ämneskategori
Neurologi
Identifikatorer
URN: urn:nbn:se:uu:diva-275487DOI: 10.4103/1673-5374.170296ISI: 000367332800011OAI: oai:DiVA.org:uu-275487DiVA, id: diva2:900380
Forskningsfinansiär
Vetenskapsrådet, 5420Vetenskapsrådet, 20716Stiftelsen Olle Engkvist ByggmästareTillgänglig från: 2016-02-04 Skapad: 2016-02-04 Senast uppdaterad: 2017-11-30Bibliografiskt granskad
Ingår i avhandling
1. Neural progenitors for sensory and motor repair
Öppna denna publikation i ny flik eller fönster >>Neural progenitors for sensory and motor repair
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Injury and neurodegenerative conditions of the spinal cord can lead to paralysis and loss of sensation. Cell therapeutic approaches can restore sensory innervation of the spinal cord following injury and protect spinal cord cells from degeneration. This thesis primarily focuses on the restoration of deaffarented sensory fibres following injury to the dorsal root and spinal cord. These injuries lead to the formation of a non-permissive glial scar that prevents sensory axons from reinnervating spinal cord targets. It takes advantage of a dorsal root injury model that closely mimics spinal root avulsion injuries occurring in humans. In the first part of the thesis, three different neural progenitor types from human or murine sources are tested for their regenerative properties following their transplantation to the site of dorsal root avulsion injury. In the second part, the ability of murine neural progenitors to protect spinal motor neurons from a neurodegenerative process is tested.

In the first original research article, I show that human embryonic stem cell derived neural progenitors are able to restore sensorimotor functions, mediated by the formation of a tissue bridge that allows ingrowth of sensory axons into the spinal cord. In the second research article, I present that murine boundary cap neural crest stem cells, a special type of neural progenitor that governs the entry of sensory axons into the spinal cord during development, are unable to form a permissive tissue bridge. This is possibly caused by the contribution of transplant derived ingrowth non-permissive glial cells. In the third research article, I show that human neural progenitors derived from foetal sources are capable of stimulating sensory ingrowth and that they ameliorate the glial scar. When this approach is combined with the delivery of sensory outgrowth stimulating neurotrophic factors, these cells fail to form a permissive tissue bridge and fail to modify the glial scar. In the final research article, murine boundary cap neural crest stem cells are shown to protect motor neurons, which harbor an amyotrophic lateral sclerosis causing mutation, from oxidative stress. Oxidative stress is a pathological component of amyotrophic lateral sclerosis in human patients.

Taken together, this thesis provides first evidence that sensory regeneration following a spinal root avulsion injury can be achieved by transplantation of human neural progenitors. In addition, it introduces murine boundary cap neural crest stem cells as interesting candidates for the cell therapeutic treatment of amyotrophic lateral sclerosis.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 67
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1365
Nyckelord
Regenerative Neurobiology, Stem cells, Sensory regeneration, Spinal cord injury, Amyotrophic Lateral Sclerosis, Neurodegeneration, Oxidative Stress
Nationell ämneskategori
Neurovetenskaper
Forskningsämne
Medicinsk vetenskap
Identifikatorer
urn:nbn:se:uu:diva-328590 (URN)978-91-513-0058-0 (ISBN)
Disputation
2017-10-23, B/C8:305, Husargatan 3, Uppsala, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2017-10-02 Skapad: 2017-08-31 Senast uppdaterad: 2018-01-13

Open Access i DiVA

fulltext(530 kB)144 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 530 kBChecksumma SHA-512
13e7dbef5bcded54829d0b2359cf7b6e218c3373cd2e6cfac6bfffc30ba2bc49a2cf426f5634fc2c347e783358e58681ad202013ea9fa6967f177e7f7fef84b9
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Hoeber, Jan

Sök vidare i DiVA

Av författaren/redaktören
Hoeber, Jan
Av organisationen
Regenerativ neurobiologi
I samma tidskrift
Neural Regeneration Research
Neurologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 144 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 372 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf