uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt178",{id:"formSmash:upper:j_idt178",widgetVar:"widget_formSmash_upper_j_idt178",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt180_j_idt188",{id:"formSmash:upper:j_idt180:j_idt188",widgetVar:"widget_formSmash_upper_j_idt180_j_idt188",target:"formSmash:upper:j_idt180:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Bayesian Sequential Testing Of The Drift Of A Brownian MotionPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2015 (English)In: ESAIM. P&S, ISSN 1292-8100, E-ISSN 1262-3318, Vol. 19, 626-648 p.Article in journal (Refereed) Published
##### Resource type

Text
##### Abstract [en]

##### Place, publisher, year, edition, pages

2015. Vol. 19, 626-648 p.
##### Keyword [en]

Bayesian analysis, sequential hypothesis testing, optimal stopping
##### National Category

Probability Theory and Statistics
##### Identifiers

URN: urn:nbn:se:uu:diva-276901DOI: 10.1051/ps/2015012ISI: 000368218600031OAI: oai:DiVA.org:uu-276901DiVA: diva2:903659
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt820",{id:"formSmash:j_idt820",widgetVar:"widget_formSmash_j_idt820",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt834",{id:"formSmash:j_idt834",widgetVar:"widget_formSmash_j_idt834",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt849",{id:"formSmash:j_idt849",widgetVar:"widget_formSmash_j_idt849",multiple:true});
##### Funder

Swedish Research Council
Available from: 2016-02-16 Created: 2016-02-16 Last updated: 2017-11-30Bibliographically approved
##### In thesis

We study a classical Bayesian statistics problem of sequentially testing the sign of the drift of an arithmetic Brownian motion with the 0-1 loss function and a constant cost of observation per unit of time for general prior distributions. The statistical problem is reformulated as an optimal stopping problem with the current conditional probability that the drift is non-negative as the underlying process. The volatility of this conditional probability process is shown to be non-increasing in time, which enables us to prove monotonicity and continuity of the optimal stopping boundaries as well as to characterize them completely in the finite-horizon case as the unique continuous solution to a pair of integral equations. In the infinite-horizon case, the boundaries are shown to solve another pair of integral equations and a convergent approximation scheme for the boundaries is provided. Also, we describe the dependence between the prior distribution and the long-term asymptotic behaviour of the boundaries.

1. Optimal Sequential Decisions in Hidden-State Models$(function(){PrimeFaces.cw("OverlayPanel","overlay1091116",{id:"formSmash:j_idt1415:0:j_idt1419",widgetVar:"overlay1091116",target:"formSmash:j_idt1415:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1885",{id:"formSmash:j_idt1885",widgetVar:"widget_formSmash_j_idt1885",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1938",{id:"formSmash:lower:j_idt1938",widgetVar:"widget_formSmash_lower_j_idt1938",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1939_j_idt1941",{id:"formSmash:lower:j_idt1939:j_idt1941",widgetVar:"widget_formSmash_lower_j_idt1939_j_idt1941",target:"formSmash:lower:j_idt1939:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});