uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MaltOptimizer: Fast and Effective Parser Optimization
Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Språkvetenskapliga fakulteten, Institutionen för lingvistik och filologi. (Computational Linguistics)
2016 (engelsk)Inngår i: Natural Language Engineering, ISSN 1351-3249, E-ISSN 1469-8110, Vol. 22, nr 2, s. 187-213Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Statistical parsers often require careful parameter tuning and feature selection. This is a nontrivial task for application developers who are not interested in parsing for its own sake, and it can be time-consuming even for experienced researchers. In this paper we present MaltOptimizer, a tool developed to automatically explore parameters and features for MaltParser, a transition-based dependency parsing system that can be used to train parser's given treebank data. MaltParser provides a wide range of parameters for optimization, including nine different parsing algorithms, an expressive feature specification language that can be used to define arbitrarily rich feature models, and two machine learning libraries, each with their own parameters. MaltOptimizer is an interactive system that performs parser optimization in three stages. First, it performs an analysis of the training set in order to select a suitable starting point for optimization. Second, it selects the best parsing algorithm and tunes the parameters of this algorithm. Finally, it performs feature selection and tunes machine learning parameters. Experiments on a wide range of data sets show that MaltOptimizer quickly produces models that consistently outperform default settings and often approach the accuracy achieved through careful manual optimization.

sted, utgiver, år, opplag, sider
2016. Vol. 22, nr 2, s. 187-213
HSV kategori
Forskningsprogram
Datorlingvistik
Identifikatorer
URN: urn:nbn:se:uu:diva-277171DOI: 10.1017/S1351324914000035ISI: 000370862900002OAI: oai:DiVA.org:uu-277171DiVA, id: diva2:904028
Tilgjengelig fra: 2016-02-17 Laget: 2016-02-17 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Nivre, Joakim

Søk i DiVA

Av forfatter/redaktør
Nivre, Joakim
Av organisasjonen
I samme tidsskrift
Natural Language Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 577 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf