uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Defect formation in graphene during low-energy ion bombardment
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: APL Materials, ISSN 2166-532X, Vol. 4, nr 4, artikel-id 046104Artikel i tidskrift, Letter (Refereegranskat) Published
Abstract [en]

This letter reports on a systematic investigation of sputter induced damage in graphene caused by low energy Ar+ ion bombardment. The integral numbers of ions per area (dose) as well as their energies are varied in the range of a few eV's up to 200 eV. The defects in the graphene are correlated to the dose/energy and different mechanisms for the defect formation are presented. The energetic bombardment associated with the conventional sputter deposition process is typically in the investigated energy range. However, during sputter deposition on graphene, the energetic particle bombardment potentially disrupts the crystallinity and consequently deteriorates its properties. One purpose with the present study is therefore to demonstrate the limits and possibilities with sputter deposition of thin films on graphene and to identify energy levels necessary to obtain defect free graphene during the sputter deposition process. Another purpose is to disclose the fundamental mechanisms responsible for defect formation in graphene for the studied energy range.

Ort, förlag, år, upplaga, sidor
2016. Vol. 4, nr 4, artikel-id 046104
Nationell ämneskategori
Materialkemi Nanoteknik
Identifikatorer
URN: urn:nbn:se:uu:diva-284702DOI: 10.1063/1.4945587ISI: 000375846100007OAI: oai:DiVA.org:uu-284702DiVA, id: diva2:920777
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, 2011.0082Vetenskapsrådet, 2014-5591 2014-6463Tillgänglig från: 2016-04-19 Skapad: 2016-04-19 Senast uppdaterad: 2020-03-26Bibliografiskt granskad
Ingår i avhandling
1. Graphene Implementation Study in Semiconductor Processing
Öppna denna publikation i ny flik eller fönster >>Graphene Implementation Study in Semiconductor Processing
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Graphene, with its two-dimensional nature and unique properties, has for over a decade captured enormous interests in both industry and academia. This work tries to answer the question of what would happen to graphene when it is subjected to various processing conditions and how this would affect the graphene functionality. The focus is placed on its ability to withstand different thin-film deposition environments with regard to the implementation of graphene in two application areas: as a diffusion barrier and in electronic devices.

With single-layer graphene films grown in-house by means of chemical vapor deposition (CVD), four techniques among the well-established thin-film deposition methods are studied in detail: atomic layer deposition (ALD), evaporation, sputter-deposition and spray-deposition. And in this order, these methods span a large range of kinetic impact energies from low to high. Graphene is known to have a threshold displacement energy of 22 eV above which carbon atoms are ejected from the lattice. Thus, ALD and evaporation work with energies below this threshold, while sputtering and spraying may involve energies above. The quality of the graphene films undergone the various depositions is mainly evaluated using Raman spectroscopy.

Spray deposition of liquid alloy Ga-In-Sn is shown to require a stack of at least 4 layers of graphene in order to act as an effective barrier to the Ga diffusion after the harsh spray-processing. Sputter-deposition is found to benefit from low substrate temperature and high chamber pressure (thereby low kinetic impact energy) so as to avoid damaging the graphene. Reactive sputtering should be avoided. Evaporation is non-invasiveness with low kinetic impact energy and graphene can be subjected to repeated evaporation and removal steps without losing its integrity. With ALD, the effects on graphene are of different nature and they are investigated in the field-effect-transistor (FET) configuration. The ALD process for deposition of Al2O3 films is found to remove undesired dopants from the prior processing and the Al2O3 films are shown to protect the graphene channel from doping by oxygen. When the substrate is turned hydrophobic by chemical treatment prior to graphene transfer-deposition, a unipolar transistor behavior is obtained.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2016. s. 62
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1377
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:uu:diva-285249 (URN)978-91-554-9585-5 (ISBN)
Disputation
2016-06-10, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-05-19 Skapad: 2016-04-19 Senast uppdaterad: 2016-06-01
2.
Posten kunde inte hittas. Det kan bero på att posten inte längre är tillgänglig eller att du har råkat ange ett felaktigt id i adressfältet.

Open Access i DiVA

fulltext(750 kB)503 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 750 kBChecksumma SHA-512
bfc274029ab84cb79404b4b325eafeae7c2bbfcf188a88da27cab7cb08aa5c7832c8fdb73af3a99a4ce2a8af7a443fd12ffb275750f9f867f6af2fa7297e45bc
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Ahlberg, PatrikJohansson, FredrikZhang, ZhibinJansson, UlfZhang, Shi-LiLindblad, AndreasNyberg, Tomas

Sök vidare i DiVA

Av författaren/redaktören
Ahlberg, PatrikJohansson, FredrikZhang, ZhibinJansson, UlfZhang, Shi-LiLindblad, AndreasNyberg, Tomas
Av organisationen
Fasta tillståndets elektronikInstitutionen för fysik och astronomiOorganisk kemi
MaterialkemiNanoteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 503 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 2489 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf