uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A k-nearest neighbor classification of hERG K+ channel blockers
Linnaeus Univ, Linnaeus Univ Ctr Biomat Chem, Dept Chem & Biomed Sci, Bioorgan & Biophys Chem Lab, S-39182 Kalmar, Sweden..
eADMET GmbH, Lichtenbergstr 8, D-85748 Munich, Germany..
Linnaeus Univ, Linnaeus Univ Ctr Biomat Chem, Dept Chem & Biomed Sci, Bioorgan & Biophys Chem Lab, S-39182 Kalmar, Sweden..
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Organisk kemi. Linnaeus Univ, Linnaeus Univ Ctr Biomat Chem, Dept Chem & Biomed Sci, Bioorgan & Biophys Chem Lab, S-39182 Kalmar, Sweden..ORCID-id: 0000-0002-0407-6542
2016 (engelsk)Inngår i: Journal of Computer-Aided Molecular Design, ISSN 0920-654X, E-ISSN 1573-4951, Vol. 30, nr 3, s. 229-236Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

A series of 172 molecular structures that block the hERG K+ channel were used to develop a classification model where, initially, eight types of PaDEL fingerprints were used for k-nearest neighbor model development. A consensus model constructed using Extended-CDK, PubChem and Substructure count fingerprint-based models was found to be a robust predictor of hERG activity. This consensus model demonstrated sensitivity and specificity values of 0.78 and 0.61 for the internal dataset compounds and 0.63 and 0.54 for the external (PubChem) dataset compounds, respectively. This model has identified the highest number of true positives (i.e. 140) from the PubChem dataset so far, as compared to other published models, and can potentially serve as a basis for the prediction of hERG active compounds. Validating this model against FDA-withdrawn substances indicated that it may even be useful for differentiating between mechanisms underlying QT prolongation.

sted, utgiver, år, opplag, sider
2016. Vol. 30, nr 3, s. 229-236
Emneord [en]
Classification model, hERG blockers, Ikr, KCNH2, k-nearest neighbor (k-NN), Toxicity
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-294332DOI: 10.1007/s10822-016-9898-zISI: 000373117200004PubMedID: 26860111OAI: oai:DiVA.org:uu-294332DiVA, id: diva2:929481
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, 238701Tilgjengelig fra: 2016-05-18 Laget: 2016-05-18 Sist oppdatert: 2020-01-22bibliografisk kontrollert

Open Access i DiVA

fulltext(487 kB)140 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 487 kBChecksum SHA-512
44f70af170846daf25b95503e181a93d9d6f6b85d803aedfcbb6eea2094b0be66b7dd87dd58231c2fe5017450e9a7b30198bf997da91a97f324e6e0b490a42d6
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Nicholls, Ian A.

Søk i DiVA

Av forfatter/redaktør
Nicholls, Ian A.
Av organisasjonen
I samme tidsskrift
Journal of Computer-Aided Molecular Design

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 140 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 402 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf