uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ultrafast non-thermal heating of water initiated by an X-ray laser
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik. (Molekyl- och kondenserade materiens fysik)ORCID-id: 0000-0002-2076-0918
SLAC National Accelerator Laboratory, USA.
SLAC National Accelerator Laboratory, USA.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 115, nr 22, s. 5652-5657Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

X-ray Free-Electron Lasers have opened the door to a new era in structural biology, enabling imaging of biomolecules and dynamics that were impossible to access with conventional methods. A vast majority of imaging experiments, including Serial Femtosecond Crystallography, use a liquid jet to deliver the sample into the interaction region. We have observed structural changes in the carrying water during X-ray exposure, showing how it transforms from the liquid phase to a plasma. This ultrafast phase transition observed in water provides evidence that any biological structure exposed to these X-ray pulses is destroyed during the X-ray exposure.The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 106 J/cm2. These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.

Ort, förlag, år, upplaga, sidor
2018. Vol. 115, nr 22, s. 5652-5657
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
URN: urn:nbn:se:uu:diva-294554DOI: 10.1073/pnas.1711220115ISI: 000433283700046PubMedID: 29760050OAI: oai:DiVA.org:uu-294554DiVA, id: diva2:930554
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF)Vetenskapsrådet, 2013-3940Stiftelsen för internationalisering av högre utbildning och forskning (STINT)Swedish National Infrastructure for Computing (SNIC)Carl Tryggers stiftelse för vetenskaplig forskning
Anmärkning

De två första författarna delar förstaförfattarskapet

Tillgänglig från: 2016-05-24 Skapad: 2016-05-24 Senast uppdaterad: 2018-08-20Bibliografiskt granskad
Ingår i avhandling
1. Femtosecond Dynamics in Water and Biological Materials with an X-Ray Laser
Öppna denna publikation i ny flik eller fönster >>Femtosecond Dynamics in Water and Biological Materials with an X-Ray Laser
2016 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Using high intensity ultrashort pulses from X-ray free electron lasers to investigate soft matter is a recent and successful development. The last decade has seen the development of new variant of protein crystallography with femtosecond dynamics, and single particle imaging with atomic resolution is on the horizon. The work presented here is part of the effort to explain what processes influence the capability to achieve high resolution information in these techniques. Non-local thermal equilibrium plasma continuum modelling is used to predict signal changes as a function of pulse duration, shape and energy. It is found that ionization is the main contributor to radiation damage in certain photon energy and intensity ranges, and diffusion depending on heating is dominant in other scenarios. In femtosecond protein crystallography, self-gating of Bragg diffraction is predicted to quench the signal from the latest parts of an X-ray pulse. At high intensities ionization is dominant and the last part of the pulse will contain less information at low resolution. At lower intensities, displacement will dominate and high resolution information will be gated first. Temporal pulse shape is also an important factor. The difference between pulse shapes is most prominent at low photon energy in the form of a general increase or decrease in signal, but the resolution dependance is most prominent at high energies. When investigating the X-ray scattering from water a simple diffusion model can be replaced by a molecular dynamics simulation, which predicts structural changes in water on femtosecond timescales. Experiments performed at LCLS are presented that supports the simulation results on structural changes that occur in the solvent during the exposure.

Ort, förlag, år, upplaga, sidor
Uppsala universitet, 2016
Nationell ämneskategori
Biofysik Atom- och molekylfysik och optik
Forskningsämne
Fysik med inriktning mot biofysik
Identifikatorer
urn:nbn:se:uu:diva-294553 (URN)
Presentation
2016-06-14, 80121, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 15:19 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-05-27 Skapad: 2016-05-24 Senast uppdaterad: 2016-05-27Bibliografiskt granskad
2. Ultrafast Structural and Electron Dynamics in Soft Matter Exposed to Intense X-ray Pulses
Öppna denna publikation i ny flik eller fönster >>Ultrafast Structural and Electron Dynamics in Soft Matter Exposed to Intense X-ray Pulses
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Investigations of soft matter using ultrashort high intensity pulses have been made possible through the advent of X-ray free-electrons lasers. The last decade has seen the development of a new type of protein crystallography where femtosecond dynamics can be studied, and single particle imaging with atomic resolution is on the horizon. The pulses are so intense that any sample quickly turns into a plasma. This thesis studies the ultrafast transition from soft matter to warm dense matter, and the implications for structural determination of proteins.                   

We use non-thermal plasma simulations to predict ultrafast structural and electron dynamics. Changes in atomic form factors due to the electronic state, and displacement as a function of temperature, are used to predict Bragg signal intensity in protein nanocrystals. The damage processes started by the pulse will gate the diffracted signal within the pulse duration, suggesting that long pulses are useful to study protein structure. This illustrates diffraction-before-destruction in crystallography.

The effect from a varying temporal photon distribution within a pulse is also investigated. A well-defined initial front determines the quality of the diffracted signal. At lower intensities, the temporal shape of the X-ray pulse will affect the overall signal strength; at high intensities the signal level will be strongly dependent on the resolution.

Water is routinely used to deliver biological samples into the X-ray beam. Structural dynamics in water exposed to intense X-rays were investigated with simulations and experiments. Using pulses of different duration, we found that non-thermal heating will affect the water structure on a time scale longer than 25 fs but shorter than 75 fs. Modeling suggests that a loss of long-range coordination of the solvation shells accounts for the observed decrease in scattering signal.

The feasibility of using X-ray emission from plasma as an indicator for hits in serial diffraction experiments is studied. Specific line emission from sulfur at high X-ray energies is suitable for distinguishing spectral features from proteins, compared to emission from delivery liquids. We find that plasma emission continues long after the femtosecond pulse has ended, suggesting that spectrum-during-destruction could reveal information complementary to diffraction.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 78
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1592
Nyckelord
X-ray free-electron laser; Serial Femtosecond Crystallography; Radiation Damage; Plasma Simulations; Ultrafast Lasers; X-ray Imaging; Diffraction Theory; Ultrafast Phenomena; Hit Detection; Plasma Emission Spectra; Serial Femtosecond Crystallography; Protein Structure; Protein Crystallography; Metalloprotein; Non-thermal Heating; Water; Ferredoxin; NLTE Simulation; XFEL; FEL; SFX
Nationell ämneskategori
Biofysik
Forskningsämne
Fysik med inriktning mot biofysik
Identifikatorer
urn:nbn:se:uu:diva-331936 (URN)978-91-513-0134-1 (ISBN)
Disputation
2017-12-15, Polhemssalen, Lägerhyddsvägen 1, Uppsala, 09:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF), ICA10-0090Vetenskapsrådet, 2013-3940Stiftelsen för internationalisering av högre utbildning och forskning (STINT)
Tillgänglig från: 2017-11-22 Skapad: 2017-10-25 Senast uppdaterad: 2018-03-07

Open Access i DiVA

fulltext(13000 kB)52 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 13000 kBChecksumma SHA-512
eb2a02d0ee37c9a79db944da4cd9d812ea95178756a5915ddce1dfa159c26c73b738fe1307730db50159c5a5c68ce4e2005e4d20779e6ce898f93c5af0c0bce6
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Jönsson, OlofRagazzon, DavideTimneanu, NicusorCaleman, Carl

Sök vidare i DiVA

Av författaren/redaktören
Jönsson, OlofRagazzon, DavideTimneanu, NicusorCaleman, Carl
Av organisationen
Molekyl- och kondenserade materiens fysikMolekylär biofysik
I samma tidskrift
Proceedings of the National Academy of Sciences of the United States of America
Atom- och molekylfysik och optik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 52 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 843 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf