Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of a PEDOT/Quinone Conducting Redox Polymer
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.ORCID iD: 0000-0002-0036-9911
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.ORCID iD: 0000-0002-5496-9664
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
Show others and affiliations
2016 (English)Conference paper, Poster (with or without abstract) (Other academic)
Abstract [en]

Organic materials can be used to ensure sustainable electrical energy storage, thus avoiding the use of inorganic materials that are inherently non-renewable and associated with large energy consumptions in their mining and refining. One category of organic energy storage materials consists of conducting redox polymers (CRPs). They include a conducting polymer backbone (CP), a redox active pendant group (PG), and a linker attaching the PG to the CP. The present work involves the CP poly(3,4-ethylenedioxythiophene) (PEDOT) and a quinone PG in acidic water solution. Quinones constitute an attractive class of molecules as they show reversible redox chemistry in several electrolyte systems, possess a high charge storage capacity and are naturally occurring e.g. in the electron transport chains in respiration and in photosynthesis. The CRP studied is characterized by cyclic voltammetry as well as by EQCM, in-situ conductance, and in-situ spectroscopic methods. In this work we present the formal potential of the quinone, the rate constant for electron transport in the polymer, mass changes during electrochemical redox conversion in different potential regions, and conductance data providing support for a CP-mediated electron transport through the material. Based on the results the electron and ion transport during electrochemical redox conversion will be discussed.                                                                                              

Place, publisher, year, edition, pages
2016.
Keywords [en]
GRC quinone conducting redox polymer PEDOT
National Category
Engineering and Technology Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
URN: urn:nbn:se:uu:diva-298111OAI: oai:DiVA.org:uu-298111DiVA, id: diva2:944564
Conference
Gordon Research Conference: Electronic Processes in Organic Materials
Available from: 2016-06-29 Created: 2016-06-29 Last updated: 2017-11-25

Open Access in DiVA

No full text in DiVA

Authority records

Sterby, MiaEmanuelsson, RikardStrømme, MariaGogoll, AdolfSjödin, Martin

Search in DiVA

By author/editor
Sterby, MiaEmanuelsson, RikardStrømme, MariaGogoll, AdolfSjödin, Martin
By organisation
Nanotechnology and Functional MaterialsOrganic Chemistry
Engineering and TechnologyNano Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 521 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf