uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Manufacturing and characterization of a ceramic single-use microvalve
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.ORCID-id: 0000-0002-5452-7831
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik, Ångström Space Technology Centre (ÅSTC).ORCID-id: 0000-0003-4468-6801
2016 (engelsk)Inngår i: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 26, nr 9, artikkel-id 095002Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We present the manufacturing and characterization of a ceramic single-use microvalve withthe potential to be integrated in lab-on-a-chip devices, and forsee its utilization in space andother demanding applications. A 3 mm diameter membrane was used as the flow barrier, andthe opening mechanism was based on cracking the membrane by inducing thermal stresses onit with fast and localized resistive heating.

Four manufacturing schemes based on high-temperature co-fired ceramic technology werestudied. Three designs for the integrated heaters and two thicknesses of 40 and 120 μmfor the membranes were considered, and the heat distribution over their membranes, therequired heating energies, their opening mode, and the flows admitted through were compared.Furthermore, the effect of applying +1 and −1 bar pressure difference on the membraneduring cracking was investigated. Thick membranes demonstrated unpromising results forlow-pressure applications since the heating either resulted in microcracks or cracking of thewhole chip. Because of the higher pressure tolerance of the thick membranes, the designwith microcracks can be considered for high-pressure applications where flow is facilitatedanyway. Thin membranes, on the other hand, showed different opening sizes depending onheater design and, consequently, heat distribution over the membranes, from microcracks toholes with sizes of 3–100% of the membrane area. For all the designs, applying +1 bar overpressure contributed to bigger openings, whereas −1 bar pressure difference only did so forone of the designs, resulting in smaller openings for the other two. The energy required forbreaking these membranes was a few hundred mJ with no significant dependence on designand applied pressure. The maximum sustainable pressure of the valve for the current designand thin membranes was 7 bar.

sted, utgiver, år, opplag, sider
2016. Vol. 26, nr 9, artikkel-id 095002
Emneord [en]
single-use valve, HTCC, alumina, platinum
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-298806DOI: 10.1088/0960-1317/26/9/095002ISI: 000402408400002OAI: oai:DiVA.org:uu-298806DiVA, id: diva2:947449
Forskningsfinansiär
Swedish National Space BoardKnut and Alice Wallenberg FoundationTilgjengelig fra: 2016-07-08 Laget: 2016-07-08 Sist oppdatert: 2017-07-11bibliografisk kontrollert
Inngår i avhandling
1. Extending Microsystems to Very High Temperatures and Chemically Harsh Environments
Åpne denne publikasjonen i ny fane eller vindu >>Extending Microsystems to Very High Temperatures and Chemically Harsh Environments
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Aiming at applications in space exploration as well as for monitoring natural hazards, this thesis focuses on understanding and overcoming the challenges of extending the applicability of microsystems to temperatures above 600°C as well as chemically harsh environments. Alumina and zirconia high-temperature co-fired ceramics (HTCC) with platinum as the conductor material, have in this thesis, been used to manufacture a wide range of high-temperature tolerant miniaturized sensors and actuators, including pressure and flow sensors, valves, a combustor, and liquid monopropellant microthrusters.

Interfacing for high temperatures is challenging. One solution is to transfer the signal wirelessly. Here, therefor, wireless pressure sensors have been developed and characterized up to 1000°C.

It is usually unwanted that material properties change with temperature, but by using smart designs, such changes can be exploited to sense physical properties as in the gas flow sensor presented, where the temperature-dependent electrical conductivity of zirconia has been utilized. In the same manner, various properties of platinum have been exploited to make temperature sensors, heaters and catalytic beds. By in-situ electroplating metals after sintering, even more capabilities were added, since many metals that do not tolerate HTCC processing can be added for additional functionality. An electroplated copper layer that was oxidized and used as an oxygen source in an alumina combustor intended for burning organic samples prior to sample analysis in a lab on a chip system, and a silver layer used as a catalyst in order to decompose hydrogen peroxide in a microthuster for spacecraft attitude control, are both examples that have been explored here.

Ceramics are both high-temperature tolerant and chemically resistant, making them suitable for both thrusters and combustors. The corresponding applications benefit from miniaturization of them in terms of decreased mass, power consumption, integration potential, and reduced sample waste.

Integrating many functions using as few materials as possible, is important when it comes to microsystems for harsh environments. This thesis has shown the high potential of co-fired ceramics in manufacturing microsystems for aggressive environments. However, interfacing is yet a major challenge to overcome.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2016. s. 45
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1424
Emneord
HTCC, MEMS, MST, Microcombustor, Microthruster, Single-use valve, Wireless pressure sensor, flow sensor, in-situ electroplating, Monopropellant, Platinum
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot mikrosystemteknik
Identifikatorer
urn:nbn:se:uu:diva-302658 (URN)978-91-554-9686-9 (ISBN)
Disputas
2016-10-31, Polhemsalen, Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2016-10-05 Laget: 2016-09-08 Sist oppdatert: 2016-10-11

Open Access i DiVA

fulltext(817 kB)277 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 817 kBChecksum SHA-512
5d87c84c7260806bf8e95857f23655567b9a58057bc26b9dc83ea92dff9376ce04a10d768ce7f3d2046ba993bf5f4aff732e7b2d72a2e29e18b278b296bbda1f
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Khaji, ZahraKlintberg, LenaThornell, Greger

Søk i DiVA

Av forfatter/redaktør
Khaji, ZahraKlintberg, LenaThornell, Greger
Av organisasjonen
I samme tidsskrift
Journal of Micromechanics and Microengineering

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 277 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 772 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf