uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Algorithmic composition using signal processing and swarm behavior.: Evaluation of three candidate methods.
2016 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

Techniques for algorithmic musical composition or generative music working directly with the frequencies of the sounds being played are rare today as most approaches rely on mapping of discrete states. The purpose of this work is to investigate how self organizing audio can be created in realtime based on pitch information, and to find methods that give both expressive control and some unpredictability. A series of experiments were done using SuperCollider and evaluated against criteria formulated using music theory and psychoacoustics. One approach was utilizing the missing fundamental phenomenon and pitch detection using autocorrelation. This approach generated unpredictable sounds but was too much reliant on user input to generate evolving sounds. Another approach was the Kuramoto model of synchronizing oscillators. This resulted in pleasant phasing sounds when oscillators modulating the amplitudes of audible oscillators were synchronized, and distorted sounds when the frequencies of the audible oscillators were synchronized. Lastly, swarming behavior was investigated by implementing an audio analogy of Reynolds’ Boids model. The boids model resulted in interesting independently evolving sounds. Only the boids model showed true promise as a method of algorithmic composition. Further work could be done to expand the boids model by incorporating more parameters. Kuramoto synchronization could viably be used for sound design or incorporated into the boids model.

sted, utgiver, år, opplag, sider
2016.
Serie
TVE ; TVE16074
Emneord [en]
Algorithmic composition, swarm intelligence, swarm behaviour, SuperCollider
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-302931OAI: oai:DiVA.org:uu-302931DiVA, id: diva2:968946
Presentation
2016-09-06, Ångströmlaboratoriet, Ångströmlaboratoriet, 752 37 Uppsala, 12:18 (svensk)
Veileder
Examiner
Tilgjengelig fra: 2016-09-13 Laget: 2016-09-13 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

fulltext(2632 kB)209 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2632 kBChecksum SHA-512
07d3fab6afe3151254d9fa8c2d81a6c37b4a1580475df0acedcd7479eb62e08b80478271dc54617e43d1cf94989375c8716c03de7784c351b0c86c10312f2745
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Nygren, Sten

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 209 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 322 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf