uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Algorithmic composition using signal processing and swarm behavior.: Evaluation of three candidate methods.
2016 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

Techniques for algorithmic musical composition or generative music working directly with the frequencies of the sounds being played are rare today as most approaches rely on mapping of discrete states. The purpose of this work is to investigate how self organizing audio can be created in realtime based on pitch information, and to find methods that give both expressive control and some unpredictability. A series of experiments were done using SuperCollider and evaluated against criteria formulated using music theory and psychoacoustics. One approach was utilizing the missing fundamental phenomenon and pitch detection using autocorrelation. This approach generated unpredictable sounds but was too much reliant on user input to generate evolving sounds. Another approach was the Kuramoto model of synchronizing oscillators. This resulted in pleasant phasing sounds when oscillators modulating the amplitudes of audible oscillators were synchronized, and distorted sounds when the frequencies of the audible oscillators were synchronized. Lastly, swarming behavior was investigated by implementing an audio analogy of Reynolds’ Boids model. The boids model resulted in interesting independently evolving sounds. Only the boids model showed true promise as a method of algorithmic composition. Further work could be done to expand the boids model by incorporating more parameters. Kuramoto synchronization could viably be used for sound design or incorporated into the boids model.

Ort, förlag, år, upplaga, sidor
2016.
Serie
TVE ; TVE16074
Nyckelord [en]
Algorithmic composition, swarm intelligence, swarm behaviour, SuperCollider
Nationell ämneskategori
Medieteknik Signalbehandling
Identifikatorer
URN: urn:nbn:se:uu:diva-302931OAI: oai:DiVA.org:uu-302931DiVA, id: diva2:968946
Presentation
2016-09-06, Ångströmlaboratoriet, Ångströmlaboratoriet, 752 37 Uppsala, 12:18 (Svenska)
Handledare
Examinatorer
Tillgänglig från: 2016-09-13 Skapad: 2016-09-13 Senast uppdaterad: 2018-01-10Bibliografiskt granskad

Open Access i DiVA

fulltext(2632 kB)220 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2632 kBChecksumma SHA-512
07d3fab6afe3151254d9fa8c2d81a6c37b4a1580475df0acedcd7479eb62e08b80478271dc54617e43d1cf94989375c8716c03de7784c351b0c86c10312f2745
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Nygren, Sten
MedieteknikSignalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 220 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 324 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf