uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Stability of the High Frequency Fast Multipole Method for Helmholtz’ Equation in Three Dimensions
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys. (Waves and Fluids)
2004 (Engelska)Ingår i: BIT Numerical Mathematics, ISSN 0006-3835, E-ISSN 1572-9125, Vol. 44, s. 773-791Artikel i tidskrift (Refereegranskat) Published
Ort, förlag, år, upplaga, sidor
2004. Vol. 44, s. 773-791
Nationell ämneskategori
Beräkningsmatematik Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:uu:diva-71125DOI: 10.1007/s10543-004-4412-8OAI: oai:DiVA.org:uu-71125DiVA, id: diva2:99036
Projekt
GEMSTillgänglig från: 2007-03-13 Skapad: 2007-03-13 Senast uppdaterad: 2018-01-10Bibliografiskt granskad
Ingår i avhandling
1. Fast Numerical Techniques for Electromagnetic Problems in Frequency Domain
Öppna denna publikation i ny flik eller fönster >>Fast Numerical Techniques for Electromagnetic Problems in Frequency Domain
2003 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The Method of Moments is a numerical technique for solving electromagnetic problems with integral equations. The method discretizes a surface in three dimensions, which reduces the dimension of the problem with one. A drawback of the method is that it yields a dense system of linear equations. This effectively prohibits the solution of large scale problems.

Papers I-III describe the Fast Multipole Method. It reduces the cost of computing a dense matrix vector multiplication. This implies that large scale problems can be solved on personal computers. In Paper I the error introduced by the Fast Multipole Method is analyzed. Paper II and Paper III describe the implementation of the Fast Multipole Method.

The problem of computing monostatic Radar Cross Section involves many right hand sides. Since the Fast Multipole Method computes a matrix times a vector, iterative techniques are used to solve the linear systems. It is important that the solution time for each system is as low as possible. Otherwise the total solution time becomes too large. Different techniques for reducing the work in the iterative solver are described in Paper IV-VI. Paper IV describes a block Quasi Minimal Residual method for several right hand sides and Sparse Approximate Inverse preconditioner that reduce the number of iterations significantly. In Paper V and Paper VI a method based on linear algebra called the Minimal Residual Interpolation method is described. It reduces the work in an iterative solver by accurately computing an initial guess for the iterative method.

In Paper VII a hybrid method between Physical Optics and the Fast Multipole Method is described. It can handle large problems that are out of reach for the Fast Multipole Method.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2003. s. 38
Serie
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1104-232X ; 916
Nyckelord
Fast Multipole Method, Minimal Residual Interpolation, Sparse Approximate Inverse preconditioning, Method of Moments, fast solvers, iterative methods, multiple right-hand sides, error analysis
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-3884 (URN)91-554-5827-0 (ISBN)
Disputation
2004-01-30, Room 1211, Polacksbacken, Uppsala University, Uppsala, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2003-12-09 Skapad: 2003-12-09 Senast uppdaterad: 2011-10-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext
Av organisationen
Avdelningen för teknisk databehandlingNumerisk analys
I samma tidskrift
BIT Numerical Mathematics
BeräkningsmatematikDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 457 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf