uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hyperspectral Crop Reflectance Data for characterising and estimating Fungal Disease Severity in Wheat
Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
2005 (engelsk)Inngår i: Biosystems Engineering, Vol. 91, nr 1, s. 9-20Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm)) Published
Abstract [en]

Many studies have shown the usefulness of hyperspectral crop reflectance data for detecting plant pathological stress. However, there is still a need to identify unique signatures for specific stresses amidst the constantly changing background associated with normal crop growth and development. Comparing spatial and temporal patterns in crop spectra can provide such signatures. This work was concerned with characterising and estimating fungal disease severity in a spring wheat crop. This goal can be accomplished by using a reference data set consisting of hyperspectral crop reflectance data vectors and the corresponding disease severity field assessments. The hyperspectral vectors were first normalised into zero-mean and unit-variance vectors by performing various combinations of spectral- and band-wise normalisations. Then, after applying the same normalisation procedures to the new hyperspectral data, a nearest-neighbour classifier was used to classify the new data against the reference data. Finally, the corresponding stress signatures were computed using a linear transformation model. High correlation was obtained between the classification results and the corresponding field assessments of fungal disease severity, confirming the usefulness and efficiency of this approach. The effects of increased disease severity could be characterised by analysing the resulting disease signatures obtained when applying the different normalisation procedures. The low computational load of this approach makes it suitable for real-time on-vehicle applications.

sted, utgiver, år, opplag, sider
2005. Vol. 91, nr 1, s. 9-20
Emneord [en]
Hyperspectral Crop Reflectance, Disease Severity
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-71755DOI: doi:10.1016/j.biosystemseng.2005.02.007OAI: oai:DiVA.org:uu-71755DiVA, id: diva2:99666
Tilgjengelig fra: 2005-05-12 Laget: 2005-05-12 Sist oppdatert: 2018-01-10

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttp://authors.elsevier.com/sd/article/S1537511005000255
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 334 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf