uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Emerging carbon-based nanosensor devices: structures, functions and applications
Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology. Fjordforsk AS, Inst Sci & Technol, N-6894 Vangsnes, Norway..
Natl Inst Res & Dev Microtechnol IMT Bucharest, Lab Micromachined Struct Microwave Circuits & Dev, Bucharest 023573, Romania..
Veneto Nanotech, Lab Nanofabricat Nanodevices, Corso Stati Uniti 4, I-35127 Padua, Italy..
2015 (English)In: Advances in Manufacturing, ISSN 2095-3127, Vol. 3, no 1, 63-72 p.Article in journal (Refereed) Published
Abstract [en]

Bionanosensors and nanosensors have been devised in recent years with the use of various materials including carbon-based nanomaterials, for applications in diagnostics, environmental science and microelectronics. Carbon-based materials are critical for sensing applications, as they have physical and electronic properties which facilitate the detection of substances in solutions, gaseous compounds and pollutants through their conductive properties and resonance-frequency transmission capacities. In this review, a series of recent studies of carbon nanotubes (CNTs) based nanosensors and optical systems are reported, with emphasis on biochemical, chemical and environmental detection. This study also encompasses a background and description of the various properties of the nanomaterials, and the operation mechanism of the manufactured nanosensors. The use of computational chemistry is applied in describing the electronic properties and molecular events of the included nanomaterials during operation. This review shows that resonance-based sensing technologies reach detection limits for gases, such as ammonia down to 10(-24) level. The study also shows that the properties of the carbon nanomaterials give them unique features that are critical for designing new sensors based on electrocatalysis and other reactive detection mechanisms. Several research fields can benefit from the described emerging technologies, such as areas of research in environmental monitoring, rapid-on site diagnostics, in situ analyses, and blood and urine sampling in medical and sport industry. Carbon nanomaterials are critical for the operational sensitivity of nanosensors. Considering the low cost of fabrication, carbon nanomaterials can represent an essential step in the manufacturing of tomorrow's commercial sensors.

Place, publisher, year, edition, pages
2015. Vol. 3, no 1, 63-72 p.
Keyword [en]
Nanomaterials, Carbon-based, Graphene, Nanotubes, Sensors, Detectors, Quantum mechanics
National Category
Nano Technology
URN: urn:nbn:se:uu:diva-303565DOI: 10.1007/s40436-015-0100-yISI: 000356044100008OAI: oai:DiVA.org:uu-303565DiVA: diva2:1006345
Available from: 2016-09-30 Created: 2016-09-20 Last updated: 2016-09-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Science for Life Laboratory, SciLifeLabDepartment of Cell and Molecular Biology
In the same journal
Advances in Manufacturing
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

ReferencesLink to record
Permanent link

Direct link