uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
Show others and affiliations
2005 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 102, no 18, 6473-7 p.Article in journal (Refereed) Published
Abstract [en]

Amyloid diseases encompass >20 medical disorders that include amyloid protein A (AA) amyloidosis, Alzheimer's disease, and type 2 diabetes. A common feature of these conditions is the selective organ deposition of disease-specific fibrillar proteins, along with the sulfated glycosaminoglycan, heparan sulfate. We have generated transgenic mice that overexpress human heparanase and have tested their susceptibility to amyloid induction. Drastic shortening of heparan sulfate chains was observed in heparanase-overproducing organs, such as liver and kidney. These sites selectively escaped amyloid deposition on experimental induction of inflammation-associated AA amyloidosis, as verified by lack of material staining with Congo Red, as well as lack of associated polysaccharide, whereas the same tissues from control animals were heavily infiltrated with amyloid. By contrast, the spleens of transgenic mice that failed to significantly overexpress heparanase contained heparan sulfate chains similar in size to those of control spleen and remained susceptible to amyloid deposition. Our findings provide direct in vivo evidence that heparan sulfate is essential for the development of amyloid disease.

Place, publisher, year, edition, pages
2005. Vol. 102, no 18, 6473-7 p.
Keyword [en]
inflammation, transgenic mice, endo-glucuronidase, Congo red staining
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-73126DOI: 10.1073/pnas.0502287102PubMedID: 15843464OAI: oai:DiVA.org:uu-73126DiVA: diva2:101037
Available from: 2005-05-31 Created: 2005-05-31 Last updated: 2017-12-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=15843464&dopt=Citation

Authority records BETA

Li, Jin-PingLindahl, Ulf

Search in DiVA

By author/editor
Li, Jin-PingLindahl, Ulf
By organisation
Department of Medical Biochemistry and MicrobiologyGeriatrics
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 841 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf