uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt155",{id:"formSmash:upper:j_idt155",widgetVar:"widget_formSmash_upper_j_idt155",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt156_j_idt158",{id:"formSmash:upper:j_idt156:j_idt158",widgetVar:"widget_formSmash_upper_j_idt156_j_idt158",target:"formSmash:upper:j_idt156:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Convergence to the Tracy-Widom distribution for longest paths in a directed random graphPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2013 (English)In: Latin American Journal of Probability and Mathematical Statistics, ISSN 1980-0436, E-ISSN 1980-0436, Vol. 10, no 2, p. 711-730Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2013. Vol. 10, no 2, p. 711-730
##### Keyword [en]

Random graph, last passage percolation, strong approximation, Tracy- Widom distribution
##### National Category

Probability Theory and Statistics
##### Identifiers

URN: urn:nbn:se:uu:diva-304258OAI: oai:DiVA.org:uu-304258DiVA, id: diva2:1014917
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt483",{id:"formSmash:j_idt483",widgetVar:"widget_formSmash_j_idt483",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt489",{id:"formSmash:j_idt489",widgetVar:"widget_formSmash_j_idt489",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt495",{id:"formSmash:j_idt495",widgetVar:"widget_formSmash_j_idt495",multiple:true});
Available from: 2016-10-03 Created: 2016-10-03 Last updated: 2017-11-30
##### In thesis

We consider a directed graph on the 2-dimensional integer lattice, placing a directed edge from vertex (i_{1},i_{2}) to (j_{1},j_{2}), whenever i_{1} ≤ j_{1}, i_{2} ≤ j_{2}, with probability p, independently for each such pair of vertices. Let L_{n,m} denote the maximum length of all paths contained in an n×m rectangle. We show that there is a positive exponent a, such that, if m/n^{a}→1, as n→∞, then a properly centered/rescaled version of L_{n,m} converges weakly to the Tracy-Widom distribution. A generalization to graphs with non-constant probabilities is also discussed.

1. On Directed Random Graphs and Greedy Walks on Point Processes$(function(){PrimeFaces.cw("OverlayPanel","overlay1039330",{id:"formSmash:j_idt781:0:j_idt788",widgetVar:"overlay1039330",target:"formSmash:j_idt781:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1294",{id:"formSmash:j_idt1294",widgetVar:"widget_formSmash_j_idt1294",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1365",{id:"formSmash:lower:j_idt1365",widgetVar:"widget_formSmash_lower_j_idt1365",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1366_j_idt1370",{id:"formSmash:lower:j_idt1366:j_idt1370",widgetVar:"widget_formSmash_lower_j_idt1366_j_idt1370",target:"formSmash:lower:j_idt1366:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});