uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The role of PET in localization of neuroendocrine and adrenocortical tumors
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology. (onk endo Kjell Öberg)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
Show others and affiliations
2002 (English)In: Annals of the New York Academy of Sciences, ISSN 0077-8923, E-ISSN 1749-6632, Vol. 970, 159-169 p.Article in journal (Refereed) Published
Abstract [en]

Positron emission tomography (PET) supplies a range of labeled compounds to be used for the characterization of tumor biochemistry. Some of these have proved to be of value for clinical diagnosis, treatment follow up, and clinical research. The first routinely used PET tracer in oncology, 18F-labeled deoxyglucose (FDG), was successfully used for diagnosis of cancer, reflecting increased expression of glucose transporter in cancerous tissue. This tracer, however, usually does not show sufficient uptake in well-differentiated tumors such as neuroendocrine tumors. We developed a tracer more specific to neuroendocrine tumors—the serotonin precursor 5-hydroxytryptophan (5-HTP) labeled with 11C—and demonstrated increased uptake and irreversible trapping of this tracer in carcinoid tumors. The uptake was so selective and the resolution was so high that we could detect more liver and lymph node metastases with PET than with CT or octreotide scintigraphy. To further improve the method, especially to reduce the high renal excretion of the tracer producing streaky artifacts in the area of interest, we introduced premedication by the decarboxylase inhibitor carbidopa, leading to a six-fold decreased renal excretion while the tumor uptake increased three-fold, hence improving the visualization of the tumors.

11C-labeled l-DOPA was evaluated as an alternative tracer, especially for endocrine pancreatic tumors, which usually do not demonstrate enhanced urinary serotonin metabolites. However, only half of the EPTs, mainly functioning tumors, could be detected with l-DOPA. Instead 5-HTP seems to be a universal tracer for EPT and foregut carcinoids. With new, more sensitive PET cameras, larger field of view and procedures for whole-body coverage, the PET examination with 5-HTP is now routinely performed as reduced whole-body PET examinations with coverage of the thorax and abdomen. With this method we have been able to visualize small neuroendocrine lesions in the pancreas and thorax (e.g., ACTH-producing bronchial carcinoids) not detectable by any other method, including octreotide scintigraphy, MRI, and CT. Another tracer, the 11β-hydroxylase inhibitor, metomidate labeled with 11C, was developed to simplify diagnosis and follow-up of patients with incidentalomas. A large series of patients with incidentally found adrenal masses have been investigated and so far all lesions of adrenocortical origin have been easily identified because of exceedingly high uptake of 11C-metomidate, whereas noncortical lesions showed very low uptake. In addition, adrenocortical cancer shows high uptake, suggesting that this PET tracer can be used for staging purposes.

Place, publisher, year, edition, pages
2002. Vol. 970, 159-169 p.
Keyword [en]
5-Hydroxytryptophan/metabolism, Adrenal Gland Neoplasms/metabolism/*radionuclide imaging/therapy, Carbon Radioisotopes/metabolism, Etomidate/*analogs & derivatives/metabolism, Fluorine Radioisotopes/metabolism, Humans, Levodopa/metabolism, Neuroendocrine Tumors/metabolism/*radionuclide imaging/therapy, Radioactive Tracers, Research Support; Non-U.S. Gov't, Tomography; Emission-Computed/*methods
National Category
Clinical Medicine
Identifiers
URN: urn:nbn:se:uu:diva-73661DOI: 10.1111/j.1749-6632.2002.tb04422.xPubMedID: 12381551OAI: oai:DiVA.org:uu-73661DiVA: diva2:101571
Available from: 2007-03-14 Created: 2007-03-14 Last updated: 2017-12-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=12381551&dopt=Citation

Authority records BETA

Eriksson, BarbroSundin, AndersJuhlin, ClaesÖrlefors, HåkanÖberg, KjellLångström, Bengt

Search in DiVA

By author/editor
Eriksson, BarbroSundin, AndersJuhlin, ClaesÖrlefors, HåkanÖberg, KjellLångström, Bengt
By organisation
Endocrine Tumor BiologyDepartment of Medical SciencesRadiologyDepartment of Surgical SciencesEndocrine OncologySection of Nuclear Medicine and PET
In the same journal
Annals of the New York Academy of Sciences
Clinical Medicine

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 586 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf