uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transient response of transformer with XLPE insulation cable winding design
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences, Electricity. Avdelningen för elektricitetslära och åskforskning.
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences, Electricity. Avdelningen för elektricitetslära och åskforskning.
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences, Electricity. Avdelningen för elektricitetslära och åskforskning.
2005 (English)In: International Journal of Electrical Power & Energy Systems, Vol. 27, no 1, 69-80 p.Article in journal (Refereed) Published
Abstract [en]

Significant advances in XLPE insulation cables that have higher electric field strength withstand capability have made it possible to apply these high voltage (HV) cables as windings in generators and transformers. Therefore, the recent advent of HV generator (Powerformer) that can be connected directly to the power transmission line has motivated the design of HV transformer (Dryformer) that performs one step transformation from transmission to distribution voltage levels. Since the dryformer will be connected directly to transmission lines, they will be subjected to transients resulting from direct and indirect lightning strikes as well as fast switching surges from Gas insulated circuit breakers. This paper presents the results of experimental studies on the cable winding power transformer (Dryformer) to study its response to various transients. Experimental investigations have been carried to obtain the transformer model parameters based on terminal measurement of admittance functions using Network Analyser, and hence for comparing the model predictions with experimentally obtained responses. The model has been successfully used in estimating the dryformer transient responses at its terminals due to surge application of various front times and peak amplitudes that are representative of lightning and switching caused transients. Experiment and simulation results show that there are considerable differences in the transient response characteristics of dryformer windings as compared to that of transformers with traditional winding design. These differences on transient responses are discussed in perspective of their basic difference in winding design features.

Place, publisher, year, edition, pages
2005. Vol. 27, no 1, 69-80 p.
Keyword [en]
Electromagnetic Compatibility, EMC, Lightning Protection, Dryformer, Electromagnetic transients
Identifiers
URN: urn:nbn:se:uu:diva-73857OAI: oai:DiVA.org:uu-73857DiVA: diva2:101768
Available from: 2006-07-03 Created: 2006-07-03 Last updated: 2011-01-11

Open Access in DiVA

No full text

Authority records BETA

Leijon, MatsThottappillil, Rajeev

Search in DiVA

By author/editor
Leijon, MatsThottappillil, Rajeev
By organisation
Department of Engineering SciencesElectricity

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 553 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf