uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Chemically-assisted fragmentation combined with multi-dimensional liquid chromatography and matrix-assisted laser desorption/ionization post source decay, matrix-assisted laser desorption/ionization tandem time-of flight or matrix-assisted laser desorption/ionization tandem mass spectrometry for improved sequencing of tryptic peptides
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm , Ludwig Institute for Cancer Research.
Show others and affiliations
2005 (English)In: European journal of mass spectrometry, ISSN 1469-0667, Vol. 11, no 2, 169-179 p.Article in journal (Refereed) Published
Abstract [en]

Derivatization of tryptic peptides using an Ettan CAF matrix-assisted laser desorption/ionization (MALDI) sequencing kit in combination with MALDI-post source decay (PSD) is a fast, accurate and convenient way to obtain de novo or confirmative peptide sequencing data. CAF (chemically assisted fragmentation) is based on solid-phase derivatization using a new class of water stable sulfonation agents, which strongly improves PSD analysis and simplifies the interpretation of acquired spectra. The derivatization is performed on solid supports, ZipTip(microC18, limiting the maximum peptide amount to 5 microg. By performing the derivatization in solution enabled the labeling of tryptic peptides derived from 100 microg of protein. To increase the number of peptides that could be sequenced, derivatized peptides were purified using multidimensional liquid chromatography (MDLC) prior to MALDI sequencing. Following the first dimension strong cation exchange (SCX) chromatography step, modified peptides were separated using reversed-phase chromatography (RPC). During the SCX clean up step, positively charged peptides are retained on the column while properly CAF-derivatized peptides (uncharged) are not. A moderately complex tryptic digest, prepared from six different proteins of equimolar amounts, was CAF-derivatized and purified by MDLC. Fractions from the second dimension nano RPC step were automatically sampled and on-line dispensed to MALDI sample plates and analyzed using MALDI mass spectrometry fragmentation techniques. All proteins in the derivatized protein mixture digest were readily identified using MALDI-PSD or MALDI tandem mass spectrometry (MS/MS). More than 40 peptides were unambiguously sequenced, representing a seven-fold increase in the number of sequenced peptides in comparison to when the CAF-derivatized protein mix digest was analyzed directly (no MDLC-separation) using MALDI-PSD. In conclusion, MDLC purification of CAF-derivatized peptides significantly increases the success rate for de novo and confirmative sequencing using various MALDI fragmentation techniques. This new approach is not only applicable to single protein digests but also to more complex digests and could, thus, be an alternative to electrospray ionization MS/MS for peptide sequencing.

Place, publisher, year, edition, pages
2005. Vol. 11, no 2, 169-179 p.
Keyword [en]
Amino Acid Sequence, Chromatography; Liquid/*methods, Molecular Sequence Data, Peptide Fragments/*chemistry/metabolism, Sequence Analysis; Protein/*methods, Spectrometry; Mass; Matrix-Assisted Laser Desorption-Ionization/*methods, Trypsin/metabolism
National Category
Medical and Health Sciences
URN: urn:nbn:se:uu:diva-74772PubMedID: 16046801OAI: oai:DiVA.org:uu-74772DiVA: diva2:102682
Available from: 2005-11-15 Created: 2005-11-15 Last updated: 2011-02-28Bibliographically approved

Open Access in DiVA

No full text


Search in DiVA

By author/editor
Hellman, Ulf
By organisation
Ludwig Institute for Cancer Research
In the same journal
European journal of mass spectrometry
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 148 hits
ReferencesLink to record
Permanent link

Direct link