uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of the Linker in Terephthalate-Functionalized Conducting Redox Polymers
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The combination of high capacity redox active pendent groups and conducting polymers, realized in conducting redox polymers (CRPs), provides materials with high charge storage capacity that are electronically conducting whichmakes CRPs attractive for electrical energy storage applications. In this report, six polythiophene and poly(3,4-ethylenedioxythiophene)(PEDOT)-based CRPs with a diethyl terephthalate unit covalently bound to the polymer chain byvarious linkers have been synthesized and characterized electrochemically. The effects of the choice of polymer backboneand of the nature of the link on the electrochemistry, and in particular the cycling stability of these polymers, are discussed.All CRPs show both the doping of the polymer backbone as well as the redox behavior of the pendent groups and the redoxpotential of the pendent groups in the CRPs is close to that of corresponding monomer, indicating insignificant interactionbetween the pendant and the polymer backbone. While all CRPs show various degrees of charge decay upon electrochemical redox conversion, the PEDOT-based CRPs show significantly improved stability compared to the polythiophene counterparts. Moreover, we show that by the right choice of link the cycling stability of diethyl terephthalate substituted PEDOTbased CRPS can be significantly improved.

Keyword [en]
conducting redox polymers, PEDOT, polythiophene, terephthalate
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:uu:diva-304623OAI: oai:DiVA.org:uu-304623DiVA: diva2:1033250
Available from: 2016-10-06 Created: 2016-10-06 Last updated: 2016-10-06
In thesis
1. Terephthalate-Functionalized Conducting Redox Polymers for Energy Storage Applications
Open this publication in new window or tab >>Terephthalate-Functionalized Conducting Redox Polymers for Energy Storage Applications
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Organic electrode materials, as sustainable and environmental benign alternatives to inorganic electrode materials, show great promise for achieving cheap, light, versatile and disposable devices for electrical energy storage applications. Conducting redox polymers (CRPs) are a new class of organic electrode materials where the charge storage capacity is provided by the redox chemistry of functional pendent groups and electronic conductivity is provided by the doped conducting polymer backbone, enabling the production of energy storage devices with high charge storage capacity and high power capability. This pendant-conducting polymer backbone combination can solve two of the main problems associated with organic molecule-based electrode materials, i.e. the dissolution of the active material and the sluggish charge transport within the material. In this thesis, diethyl terephthalate and polythiophenes were utilized as the pendant and the backbone, respectively. The choice of pendant-conducting polymer backbone combination was based on potential match between the two moieties, i.e. the redox reaction of terephthalate pendent groups and the n-doping of polythiophene backbone occur in the same potential region. The resulting CRPs exhibited fast charge transport within the polymer films and low activation energies involved charge propagation through these materials. In the design of these CRPs an unconjugated link between the pendant and the backbone was found to be advantageous in terms of the polymerizability of the monomers and for the preservation of individual redox activity of the pendants and the polymer chain in CRPs. The functionalized materials were specifically designed as anode materials for energy storage applications and, although insufficient cycling stability was observed, the work presented in this thesis demonstrates that the combination of redox active functional groups with conducting polymers, forming CRPs, shows promise for the development of organic matter-based electrical energy storage materials.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 60 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1437
Keyword
conducting polymers, terephthalate, polythiophene, PEDOT, conductance
National Category
Nano Technology
Identifiers
urn:nbn:se:uu:diva-304628 (URN)978-91-554-9715-6 (ISBN)
Public defence
2016-11-24, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (English)
Opponent
Supervisors
Available from: 2016-11-08 Created: 2016-10-06 Last updated: 2016-11-16

Open Access in DiVA

No full text

By organisation
Department of Engineering SciencesSynthetical Organic ChemistryNanotechnology and Functional Materials
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 391 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf