uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Directional Young's modulus of single-crystal and cold-rolled titanium from ab initio calculations: Preferred crystal orientation due to cold rolling
Univ Turku, Dept Phys & Astron, Turku, Finland.;Turku Univ, Ctr Mat & Surfaces MatSurf, Turku, Finland.;Natl Doctoral Programme Nanosci NGS NANO, Jyvaskyla, Finland..
Univ Turku, Dept Phys & Astron, Turku, Finland.;Turku Univ, Ctr Mat & Surfaces MatSurf, Turku, Finland.;Natl Doctoral Programme Nanosci NGS NANO, Jyvaskyla, Finland..
Univ Turku, Dept Phys & Astron, Turku, Finland.;Turku Univ, Ctr Mat & Surfaces MatSurf, Turku, Finland..
Univ Turku, Dept Phys & Astron, Turku, Finland.;Turku Univ, Ctr Mat & Surfaces MatSurf, Turku, Finland..
Show others and affiliations
2016 (English)In: Philosophical Magazine, ISSN 1478-6435, E-ISSN 1478-6443, Vol. 96, no 26, 2736-2751 p.Article in journal (Refereed) Published
Abstract [en]

Titanium is a strong, corrosion resistant metal with low mass density, making it ideal for various purposes, including aviation and medical applications. In the present work, the elastic properties of titanium have been investigated using the first principles Exact Muffin-Tin Orbitals method. The focus of our study is the anisotropic elasticity of single-crystal and cold-rolled titanium. Both types of titanium are used in industrial applications because of their special mechanical properties compared to randomly ordered polycrystalline alloys. Single crystals have better creep resistance compared to polycrystalline metals, while cold-rolled ones, on the other hand, possess more strength. Here cold-rolled titanium is investigated for the first time using ab initio calculations. Single-crystal results are obtained directly from first principles total energy calculations, whereas the elasticity of the cold-rolled structure is estimated from the single-crystal data. The elasticity of cold-rolled titanium has previously been investigated only experimentally, and thus the present computational approach provides new insight and valuable complementary information, not only for cold-rolled titanium, but also for more complex structures. Our results are found to be in good agreement with experimental findings and therefore serve as a starting point for investigating the elasticity of titanium alloys, which, using our method, can be accomplished as easily as the pure titanium case.

Place, publisher, year, edition, pages
2016. Vol. 96, no 26, 2736-2751 p.
Keyword [en]
ab initio, elasticity, titanium, mechanical properties, anisotropic elasticity, cold rolling
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:uu:diva-304555DOI: 10.1080/14786435.2016.1213443ISI: 000382626500003OAI: oai:DiVA.org:uu-304555DiVA: diva2:1033300
Available from: 2016-10-06 Created: 2016-10-06 Last updated: 2017-11-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Vitos, Levente
By organisation
Materials Theory
In the same journal
Philosophical Magazine
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 543 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf