uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Model averaging for robust assessment of QT prolongation by concentration-response analysis
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.ORCID iD: 0000-0003-1258-8297
Novartis Pharma AG, Basel, Switzerland.
Show others and affiliations
2017 (English)In: Statistics in Medicine, ISSN 0277-6715, E-ISSN 1097-0258, Vol. 36, no 24, p. 3844-3857Article in journal (Refereed) Published
Abstract [en]

Assessing the QT prolongation potential of a drug is typically done based on pivotal safety studies called thorough QT studies. Model-based estimation of the drug-induced QT prolongation at the estimated mean maximum drug concentration could increase efficiency over the currently used intersection-union test. However, robustness against model misspecification needs to be guaranteed in pivotal settings. The objective of this work was to develop an efficient, fully prespecified model-based inference method for thorough QT studies, which controls the type I error and provides satisfactory test power. This is achieved by model averaging: The proposed estimator of the concentration-response relationship is a weighted average of a parametric (linear) and a nonparametric (monotonic I-splines) estimator, with weights based on mean integrated square error. The desired properties of the method were confirmed in an extensive simulation study, which demonstrated that the proposed method controlled the type I error adequately, and that its power was higher than the power of the nonparametric method alone. The method can be extended from thorough QT studies to the analysis of QT data from pooled phase I studies.

Place, publisher, year, edition, pages
2017. Vol. 36, no 24, p. 3844-3857
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-303632DOI: 10.1002/sim.7395ISI: 000412107100007PubMedID: 28703360OAI: oai:DiVA.org:uu-303632DiVA, id: diva2:1038971
Funder
EU, FP7, Seventh Framework Programme, 115156
Available from: 2016-10-20 Created: 2016-09-21 Last updated: 2017-12-21Bibliographically approved
In thesis
1. Improved Methods for Pharmacometric Model-Based Decision-Making in Clinical Drug Development
Open this publication in new window or tab >>Improved Methods for Pharmacometric Model-Based Decision-Making in Clinical Drug Development
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Pharmacometric model-based analysis using nonlinear mixed-effects models (NLMEM) has to date mainly been applied to learning activities in drug development. However, such analyses can also serve as the primary analysis in confirmatory studies, which is expected to bring higher power than traditional analysis methods, among other advantages. Because of the high expertise in designing and interpreting confirmatory studies with other types of analyses and because of a number of unresolved uncertainties regarding the magnitude of potential gains and risks, pharmacometric analyses are traditionally not used as primary analysis in confirmatory trials.

The aim of this thesis was to address current hurdles hampering the use of pharmacometric model-based analysis in confirmatory settings by developing strategies to increase model compliance to distributional assumptions regarding the residual error, to improve the quantification of parameter uncertainty and to enable model prespecification.

A dynamic transform-both-sides approach capable of handling skewed and/or heteroscedastic residuals and a t-distribution approach allowing for symmetric heavy tails were developed and proved relevant tools to increase model compliance to distributional assumptions regarding the residual error. A diagnostic capable of assessing the appropriateness of parameter uncertainty distributions was developed, showing that currently used uncertainty methods such as bootstrap have limitations for NLMEM. A method based on sampling importance resampling (SIR) was thus proposed, which could provide parameter uncertainty in many situations where other methods fail such as with small datasets, highly nonlinear models or meta-analysis. SIR was successfully applied to predict the uncertainty in human plasma concentrations for the antibiotic colistin and its prodrug colistin methanesulfonate based on an interspecies whole-body physiologically based pharmacokinetic model. Lastly, strategies based on model-averaging were proposed to enable full model prespecification and proved to be valid alternatives to standard methodologies for studies assessing the QT prolongation potential of a drug and for phase III trials in rheumatoid arthritis.

In conclusion, improved methods for handling residual error, parameter uncertainty and model uncertainty in NLMEM were successfully developed. As confirmatory trials are among the most demanding in terms of patient-participation, cost and time in drug development, allowing (some of) these trials to be analyzed with pharmacometric model-based methods will help improve the safety and efficiency of drug development.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. p. 91
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, ISSN 1651-6192 ; 223
Keyword
pharmacometrics, nonlinear mixed-effects models, confirmatory trials, residual error modeling, parameter uncertainty, sampling importance resampling, model-averaging
National Category
Health Sciences
Research subject
Pharmaceutical Science
Identifiers
urn:nbn:se:uu:diva-305697 (URN)978-91-554-9734-7 (ISBN)
Public defence
2016-12-09, B/A1:107a, Biomedicinskt Centrum, Husargatan 3, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2016-11-18 Created: 2016-10-20 Last updated: 2016-11-28

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Karlsson, Mats O

Search in DiVA

By author/editor
Karlsson, Mats O
By organisation
Department of Pharmaceutical Biosciences
In the same journal
Statistics in Medicine
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 373 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf