uu.seUppsala University Publications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt789",{id:"formSmash:upper:j_idt789",widgetVar:"widget_formSmash_upper_j_idt789",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt790_j_idt792",{id:"formSmash:upper:j_idt790:j_idt792",widgetVar:"widget_formSmash_upper_j_idt790_j_idt792",target:"formSmash:upper:j_idt790:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Iterating Brownian Motions, Ad LibitumPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)In: Journal of theoretical probability, ISSN 0894-9840, E-ISSN 1572-9230, Vol. 27, no 2, 433-448 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2014. Vol. 27, no 2, 433-448 p.
##### Keyword [en]

Brownian motion, Iterated Brownian motion, Harris chain, Random measure, Exchangeability, Weak convergence, Local time, de Finetti-Hewitt-Savage theorem
##### National Category

Probability Theory and Statistics
##### Identifiers

URN: urn:nbn:se:uu:diva-306352DOI: 10.1007/s10959-012-0434-3ISI: 000334996100006OAI: oai:DiVA.org:uu-306352DiVA: diva2:1040450
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1019",{id:"formSmash:j_idt1019",widgetVar:"widget_formSmash_j_idt1019",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1025",{id:"formSmash:j_idt1025",widgetVar:"widget_formSmash_j_idt1025",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1031",{id:"formSmash:j_idt1031",widgetVar:"widget_formSmash_j_idt1031",multiple:true});
Available from: 2016-10-27 Created: 2016-10-27 Last updated: 2016-10-27Bibliographically approved

Let B-1, B-2, aEuro broken vertical bar be independent one-dimensional Brownian motions parameterized by the whole real line such that B (i) (0)=0 for every ia parts per thousand yen1. We consider the nth iterated Brownian motion W (n) (t)=B (n) (B (n-1)(a <-(B (2)(B (1)(t)))a <-)). Although the sequence of processes (W (n) ) (na parts per thousand yen1) does not converge in a functional sense, we prove that the finite-dimensional marginals converge. As a consequence, we deduce that the random occupation measures of W (n) converge to a random probability measure mu (a). We then prove that mu (a) almost surely has a continuous density which should be thought of as the local time process of the infinite iteration W (a) of independent Brownian motions. We also prove that the collection of random variables (W (a)(t),taa"ea-{0}) is exchangeable with directing measure mu(infinity).

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1726",{id:"formSmash:lower:j_idt1726",widgetVar:"widget_formSmash_lower_j_idt1726",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1727_j_idt1729",{id:"formSmash:lower:j_idt1727:j_idt1729",widgetVar:"widget_formSmash_lower_j_idt1727_j_idt1729",target:"formSmash:lower:j_idt1727:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});