uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species.
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi. (Behavioral Genetics)
2005 (English)In: Oecologia, ISSN 0029-8549, Vol. 142, no 2, 247-60 p.Article in journal (Refereed) Published
Abstract [en]

Sporadic summer rainfall in semi-arid ecosystems can provide enough soil moisture to drastically increase CO(2) efflux and rates of soil N cycling. The magnitudes of C and N pulses are highly variable, however, and the factors regulating these pulses are poorly understood. We examined changes in soil respiration, bacterial, fungal and microfaunal populations, and gross rates of N mineralization, nitrification, and NH(4) (+) and NO(3) (-) immobilization during the 10 days following wetting of dry soils collected from stands of big sagebrush (Artemisia tridentata) and cheatgrass (Bromus tectorum) in central Utah. Soil CO(2) production increased more than tenfold during the 17 h immediately following wetting. The labile organic C pool released by wetting was almost completely respired within 2-3 days, and was nearly three times as large in sagebrush soil as in cheatgrass. In spite of larger labile C pools beneath sagebrush, microbial and microfaunal populations were nearly equal in the two soils. Bacterial and fungal growth coincided with depletion of labile C, and populations peaked in both soils 2 days after wetting. Protozoan populations, whose biomass was nearly 3,000-fold lower than bacteria and fungi, peaked after 2-4 days. Gross N mineralization and nitrification rates were both faster in cheatgrass soil than in sagebrush, and caused greater nitrate accumulation in cheatgrass soil. Grazing of bacteria and fungi by protozoans and nematodes could explain neither temporal trends in N mineralization rates nor differences between soil types. However, a mass balance model indicated that the initial N pulse was associated with degradation of microbial substrates that were rich in N (C:N <8.3), and that microbes had shifted to substrates with lower N contents (C:N =15-25) by day 7 of the incubation. The model also suggested that the labile organic matter in cheatgrass soil had a lower C:N ratio than in sagebrush, and this promoted faster N cycling rates and greater N availability. This study provides evidence that the high N availability often associated with wetting of cheatgrass soils is a result of cheatgrass supplying substrates to microbes that are of high decomposability and N content.

Place, publisher, year, edition, pages
2005. Vol. 142, no 2, 247-60 p.
Keyword [en]
Animals, Artemisia, Bacteria/growth & development, Bromus, Carbon/*metabolism, Comparative Study, Ecosystem, Feeding Behavior/physiology, Fungi/growth & development, Models; Biological, Nematoda/physiology, Nitrogen/*metabolism, Population Dynamics, Protozoa/growth & development, Research Support; Non-U.S. Gov't, Research Support; U.S. Gov't; Non-P.H.S., Soil Microbiology, Utah, Water
National Category
URN: urn:nbn:se:uu:diva-76401PubMedID: 15490245OAI: oai:DiVA.org:uu-76401DiVA: diva2:104313
Full text article available in www.springerlink.comAvailable from: 2006-03-02 Created: 2006-03-02 Last updated: 2011-01-11

Open Access in DiVA

No full text

Other links


Search in DiVA

By author/editor
Saetre, Peter
By organisation
Department of Evolution, Genomics and SystematicsEvolutionary Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 183 hits
ReferencesLink to record
Permanent link

Direct link