uu.seUppsala University Publications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt147",{id:"formSmash:upper:j_idt147",widgetVar:"widget_formSmash_upper_j_idt147",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt148_j_idt150",{id:"formSmash:upper:j_idt148:j_idt150",widgetVar:"widget_formSmash_upper_j_idt148_j_idt150",target:"formSmash:upper:j_idt148:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Scaling limit of the loop-erased random walk Green's functionPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)In: Probability theory and related fields, ISSN 0178-8051, E-ISSN 1432-2064, Vol. 166, no 1-2, 271-319 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2016. Vol. 166, no 1-2, 271-319 p.
##### Keyword [en]

Loop-erased random walk, Green's function, scaling limit, loop measure, Poisson kernel, Fomin's identity, Schramm-Loewner evolution
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-306747DOI: 10.1007/s00440-015-0655-3ISI: 000384427700005OAI: oai:DiVA.org:uu-306747DiVA: diva2:1044532
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt386",{id:"formSmash:j_idt386",widgetVar:"widget_formSmash_j_idt386",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt392",{id:"formSmash:j_idt392",widgetVar:"widget_formSmash_j_idt392",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt398",{id:"formSmash:j_idt398",widgetVar:"widget_formSmash_j_idt398",multiple:true});
##### Funder

Swedish Research Council
Available from: 2016-11-03 Created: 2016-11-03 Last updated: 2016-11-03Bibliographically approved

We consider loop-erased random walk (LERW) running between two boundary points of a square grid approximation of a planar simply connected domain. The LERW Green's function is the probability that the LERW passes through a given edge in the domain. We prove that this probability, multiplied by the inverse mesh size to the power 3/4, converges in the lattice size scaling limit to (a constant times) an explicit conformally covariant quantity which coincides with the Green's function. The proof does not use SLE techniques and is based on a combinatorial identity which reduces the problem to obtaining sharp asymptotics for two quantities: the loop measure of random walk loops of odd winding number about a branch point near the marked edge and a "spinor" observable for random walk started from one of the vertices of the marked edge.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1098",{id:"formSmash:lower:j_idt1098",widgetVar:"widget_formSmash_lower_j_idt1098",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1100_j_idt1102",{id:"formSmash:lower:j_idt1100:j_idt1102",widgetVar:"widget_formSmash_lower_j_idt1100_j_idt1102",target:"formSmash:lower:j_idt1100:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});