uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Investigating the effects of water waves on the turbulence structure in the atmosphere using direct numerical simulations
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Earth Sciences, Department of Earth Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Earth Sciences, Department of Earth Sciences, Air and Water Science. LUVA. (meteorologi)
2005 (English)In: Dyn. Atmos. Oceans, Vol. 38, 147-171 p.Article in journal (Refereed) Published
Abstract [en]

The influence of an idealized moving wavy surface on the overlying airflow is investigated using direct numerical simulations (DNS). In the present simulations, the bulk Reynolds number is Re = 8000 (; where U0 is the forcing velocity of the flow, h the height of the domain and v the kinematic viscosity) and the phase speed of the imposed waves relative to the friction velocity, i.e., the wave age varies from very slow to fast waves. The wave signal is clearly present in the airflow up to at least 0.15λ (where λ is the wave length) and is present up to higher levels for faster waves. In the kinetic energy budgets, pressure transport is mainly of importance for slow waves. For fast waves, viscous transport and turbulent transport dominate near the surface. Kinetic energy budgets for the wave and turbulent perturbations show a non-negligible transport of turbulent kinetic energy directed from turbulence to the wave perturbation in the airflow. The wave-turbulent energy transport depends on the size, tilt, and phase of the wave-induced part of the turbulent Reynolds stresses.

According to the DNS data, slow waves are more efficient in generating isotropic turbulence than fast waves.

Despite the differences in wave-shape as well as in Reynolds number between the idealized direct numerical simulations and the atmosphere, there are intriguing similarities in the turbulence structure. Important information about the turbulence above waves in the atmosphere can be obtained from DNS—the data must, however, be interpreted with care.

Place, publisher, year, edition, pages
2005. Vol. 38, 147-171 p.
Keyword [en]
DNS; Turbulent kinetic energy budget; Moving surface waves; Fast waves
National Category
Meteorology and Atmospheric Sciences
URN: urn:nbn:se:uu:diva-76647OAI: oai:DiVA.org:uu-76647DiVA: diva2:104559
Available from: 2006-03-15 Created: 2006-03-15 Last updated: 2011-01-11

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Rutgersson, Anna
By organisation
Department of Earth SciencesAir and Water Science
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 449 hits
ReferencesLink to record
Permanent link

Direct link