uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Organic Polymer Dots as Photocatalysts for Visible Light-Driven Hydrogen Generation
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
Show others and affiliations
2016 (English)In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 40, p. 12306-12310Article in journal (Refereed) Published
Abstract [en]

For the first time, organic semiconducting polymer dots (Pdots) based on poly[(9,9'-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1', 3} thiadiazole)] (PFBT) and polystyrene grafting with carboxyl-group-functionalized ethylene oxide (PS-PEG-COOH) are introduced as a photocatalyst towards visible-light-driven hydrogen generation in a completely organic solvent-free system. With these organic Pdots as the photocatalyst, an impressive initial rate constant of 8.3 mmol h(-1) g(-1) was obtained for visible-light-driven hydrogen production, which is 5-orders of magnitude higher than that of pristine PFBT polymer under the same catalytic conditions. Detailed kinetics studies suggest that the productive electron transfer quench of the excited state of Pdots by an electron donor is about 40%. More importantly, we also found that the Pdots can tolerate oxygen during catalysis, which is crucial for further application of this material for light-driven water splitting.

Place, publisher, year, edition, pages
2016. Vol. 55, no 40, p. 12306-12310
Keywords [en]
co-solvent-free, hydrogen generation, photocatalysts, polymer dots, visible light
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-307285DOI: 10.1002/anie.201607018ISI: 000384713700027PubMedID: 27604393OAI: oai:DiVA.org:uu-307285DiVA, id: diva2:1046123
Funder
Swedish Energy AgencyKnut and Alice Wallenberg FoundationÅForsk (Ångpanneföreningen's Foundation for Research and Development), 14-452Stiftelsen Olle Engkvist ByggmästareGöran Gustafsson Foundation for promotion of scientific research at Uppala University and Royal Institute of TechnologyAvailable from: 2016-11-11 Created: 2016-11-11 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Zhang, LeiFernandes, Daniel L. A.Tian, LeiTian, Haining
By organisation
Physical Chemistry
In the same journal
Angewandte Chemie International Edition
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 640 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf