uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Competition-driven build-up of habitat isolation and selection favoring modified dispersal patterns in a young avian hybrid zone
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology. Univ Helsinki, Zool Unit, Finnish Museum Nat Hist, FIN-00014 Helsinki, Finland..
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
Show others and affiliations
2016 (English)In: Evolution, ISSN 0014-3820, E-ISSN 1558-5646, Vol. 70, no 10, 2226-2238 p.Article in journal (Refereed) Published
Abstract [en]

Competition-driven evolution of habitat isolation is an important mechanism of ecological speciation but empirical support for this process is often indirect. We examined how an on-going displacement of pied flycatchers from their preferred breeding habitat by collared flycatchers in a young secondary contact zone is associated with (a) access to an important food resource (caterpillar larvae), (b) immigration of pied flycatchers in relation to habitat quality, and (c) the risk of hybridization in relation to habitat quality. Over the past 12 years, the estimated access to caterpillar larvae biomass in the habitat surrounding the nests of pied flycatchers has decreased by a fifth due to shifted establishment possibilities, especially for immigrants. However, breeding in the high quality habitat has become associated with such a high risk of hybridization for pied flycatchers that overall selection currently favors pied flycatchers that were forced to immigrate into the poorer habitats (despite lower access to preferred food items). Our results show that competition-driven habitat segregation can lead to fast habitat isolation, which per se caused an opportunity for selection to act in favor of future "voluntarily" altered immigration patterns and possibly strengthened habitat isolation through reinforcement.

Place, publisher, year, edition, pages
2016. Vol. 70, no 10, 2226-2238 p.
Keyword [en]
Competitive exclusion, ecological speciation, habitat segregation, prezygotic isolation, speciation
National Category
Evolutionary Biology
Identifiers
URN: urn:nbn:se:uu:diva-307727DOI: 10.1111/evo.13019ISI: 000385550700005PubMedID: 27464950OAI: oai:DiVA.org:uu-307727DiVA: diva2:1048431
Funder
Swedish Research Council
Available from: 2016-11-21 Created: 2016-11-21 Last updated: 2016-12-08Bibliographically approved
In thesis
1. Speciation and Metabolic rate: Insights from an avian hybrid zone
Open this publication in new window or tab >>Speciation and Metabolic rate: Insights from an avian hybrid zone
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The role of divergent climate adaptation in speciation has received surprisingly little scientific attention. My dissertation research focused on how resting metabolic rate (RMR) relates to the build up of prezygotic and postzygotic isolation in a natural Ficedula flycatcher hybrid zone. RMR is the amount of energy an organism needs to run its internal organs. Since RMR is related to life history traits and thermoregulation in other systems, it is likely to affect speciation processes at secondary contact. I found that adult collared flycatchers displace pied flycatchers into increasingly poor habitats (Paper I). Pied nestlings exhibit lower RMR in poor environments (Paper II), which may promote regional coexistence and habitat isolation by making it possible for pied flycatchers to escape competition from collared flycatchers and reduce the risk of hybridization by breeding in the poorer habitats. Further, I found that while collared flycatcher nestling RMR was not environmentally-dependent (Paper II, Paper III), those collared flycatcher nestlings that had a lower RMR in poor environments tended to have higher condition (Paper III). Further, RMR was genetically linked to a sexual ornament in collared males that has previously been shown to be beneficial in poor environments. Lastly, I found that by seven days old, nestlings increase their metabolic rate when listening to song, indicating that they are listening, and by 9 days they can discriminate between songs (Paper IV). Taken together, RMR could affect pre-zygotic isolation via correlations with life history strategies, song and sexual ornaments. RMR is also related to post zygotic isolation in Ficedula flycatchers. I found that flycatcher hybrids tended to have a higher RMR than the parental species (Paper V), and that there were many differentially expressed genes in energetically expensive organs in hybrids that were related to metabolic function (Paper VI). Thus, metabolic dysfunction, possibly caused by genetic incompatibilities, in Ficedula flycatcher hybrids could be a factor leading to infertility and postzygotic isolation between the parental species. Overall, I find that RMR could be a general physiological trait that affects both pre- and postzygotic isolation in hybridizing species at secondary contact, and ought to be more thoroughly considered in speciation research. 

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. 43 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1462
Keyword
resting metabolic rate, life history, hybridization, speciation, reproductive isolation, Ficedula flycatcher
National Category
Ecology Evolutionary Biology Genetics
Research subject
Biology with specialization in Animal Ecology
Identifiers
urn:nbn:se:uu:diva-309969 (URN)978-91-554-9776-7 (ISBN)
Public defence
2017-02-10, Zootissalen, Villavägen 9, Uppsala, 10:00 (English)
Opponent
Supervisors
Available from: 2017-01-19 Created: 2016-12-08 Last updated: 2017-01-25

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
McFarlane, S. ErynWheatcroft, DavidÅlund, MurielleQvarnström, Anna
By organisation
Animal ecology
In the same journal
Evolution
Evolutionary Biology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 119 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf