uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery
Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India..
Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India..
Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat Phys, S-10044 Stockholm, Sweden..
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
Show others and affiliations
2016 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 18, no 32, p. 22323-22330Article in journal (Refereed) Published
Abstract [en]

Comprehensive understanding of the charge transport mechanism in the intrinsic structure of an electrode material is essential in accounting for its electrochemical performance. We present here systematic experimental and theoretical investigations of Li+-ion diffusion in a novel layered material, viz. lithium titanium niobate. Lithium titanium niobate (exact composition Li0.55K0.45TiNbO5 center dot 1.06H(2)O) is obtained from sol-gel synthesized potassium titanium niobate (KTiNbO5) by an ion-exchange method. The Li+-ions are inserted and de-inserted preferentially into the galleries between the octahedral layers formed by edge and corner sharing TiO6 and NbO6 octahedral units and the effective chemical diffusion coefficient, is estimated to be 3.8 x 10(-11) cm(2) s(-1) using the galvanostatic intermittent titration technique (GITT). Calculations based on density functional theory (DFT) strongly confirm the anisotropic Li+-ion diffusion in the interlayer galleries and that Li+-ions predominantly diffuse along the crystallographic b-direction. The preferential Li+-ion diffusion along the b-direction is assisted by line-defects, which are observed to be higher in concentration along the b-direction compared to the a-and c-directions, as revealed by high resolution electron microscopy. The Li-Ti niobate can be cycled to low voltages (approximate to 0.2 V) and show stable and satisfactory battery performance over 100 cycles. Due to the possibility of cycling to low voltages, cyclic voltammetry and X-ray photoelectron spectroscopy convincingly reveal the reversibility of Ti3+ <-> Ti2+ along with Ti4+ <-> Ti3+ and Nb5+ <-> Nb4+.

Place, publisher, year, edition, pages
2016. Vol. 18, no 32, p. 22323-22330
National Category
Condensed Matter Physics Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-307878DOI: 10.1039/c6cp04488cISI: 000381436500035PubMedID: 27459636OAI: oai:DiVA.org:uu-307878DiVA, id: diva2:1048840
Funder
Carl Tryggers foundation Swedish Research CouncilStandUpAvailable from: 2016-11-22 Created: 2016-11-22 Last updated: 2017-11-29Bibliographically approved
In thesis
1. Energy Storage Materials: Insights From ab Initio Theory: Diffusion, Structure, Thermodynamics and Design.
Open this publication in new window or tab >>Energy Storage Materials: Insights From ab Initio Theory: Diffusion, Structure, Thermodynamics and Design.
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The development of science and technology have provided a lifestyle completely dependent on energy consumption. Devices such as computers and mobile phones are good examples of how our daily life depends on electric energy. In this scenario, energy storage technologies emerge with strategic importance providing efficient ways to transport and commercialize the produced energy. Rechargeable batteries come as the most suitable alternative to fulfill the market demand due to their higher energy- and power- density when compared with other electrochemical energy storage systems. In this context, during the production of this thesis, promising compounds for advanced batteries application were investigated from the theoretical viewpoint. The framework of the density functional theory has been employed together with others theoretical tools to study properties such as ionic diffusion, redox potential, electronic structure and crystal structure prediction.

Different organic materials were theoretically characterized with quite distinct objectives. For instance, a protocol able to predict the redox potential in solution of long oligomers were developed and tested against experimental measurements. Strategies such as anchoring of small active molecules on polymers backbone have also been investigated through a screening process that determined the most promising candidates. Methods such as evolutionary simulation and basin-hopping algorithm were employed to search for global minimum crystal structures of small molecules and inorganic compounds working as a cathode of advanced sodium batteries. The crystal structure evolution of C6Cl4O2 upon Na insertion was unveiled and the main reasons behind the lower specific capacity obtained in the experiment were clarified. Ab initio molecular dynamics and the nudged elastic band method were employed to understand the underlying ionic diffusion mechanisms in the recently proposed Alluaudite and Eldfellite cathode materials. Moreover, it was demonstrated that electronic conduction in Na2O2, a byproduct of the Na-O2 battery, occurs via hole polarons hopping. Important physical and chemical insights were obtained during the production of this thesis. It finally supports the development of low production cost, environmental friendliness and efficient electrode compounds for advanced secondary batteries. 

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. p. 83
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1584
Keywords
Density Functional Theory, Defects Diffusion, Thermodynamics and Batteries.
National Category
Natural Sciences
Identifiers
urn:nbn:se:uu:diva-331399 (URN)978-91-513-0122-8 (ISBN)
Public defence
2017-12-07, Polhemsalen, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2017-11-15 Created: 2017-10-19 Last updated: 2018-03-07

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Chakraborty, SudipAhuja, Rajeev
By organisation
Molecular and Condensed Matter Physics
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Condensed Matter PhysicsCondensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 590 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf