uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.ORCID iD: 0000-0002-6413-1443
2016 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, 36640Article in journal (Refereed) Published
Abstract [en]

For effective metabolic engineering, a toolbox of genetic components that enables predictable control of gene expression is needed. Here we present a systematic study of promoters and ribosome binding sites in the unicellular cyanobacterium Synechocystis sp. PCC 6803. A set of metal ion inducible promoters from Synechocystis were compared to commonly used constitutive promoters, by measuring fluorescence of a reporter protein in a standardized setting to allow for accurate comparisons of promoter activity. The most versatile and useful promoter was found to be PnrsB, which from a relatively silent expression could be induced almost 40-fold, nearly up to the activity of the strong psbA2 promoter. By varying the concentrations of the two metal ion inducers Ni(2+) and Co(2+), expression from the promoter was highly tunable, results that were reproduced with PnrsB driving ethanol production. The activities of several ribosomal binding sites were also measured, and tested in parallel in Synechocystis and Escherichia coli. The results of the study add useful information to the Synechocystis genetic toolbox for biotechnological applications.

Place, publisher, year, edition, pages
2016. Vol. 6, 36640
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-308074DOI: 10.1038/srep36640ISI: 000388069200002PubMedID: 27857166OAI: oai:DiVA.org:uu-308074DiVA: diva2:1049129
Funder
Swedish Energy Agency, 38334-1
Available from: 2016-11-23 Created: 2016-11-23 Last updated: 2016-12-20Bibliographically approved
In thesis
1. Metabolic Engineering of Synechocystis sp. PCC 6803 for Terpenoid Production
Open this publication in new window or tab >>Metabolic Engineering of Synechocystis sp. PCC 6803 for Terpenoid Production
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the Paris Agreement from 2015, nations agreed to limit the effects of global warming to well below 2°C. To be able to reach those goals, cheap, abundant and carbon neutral energy alternatives needs to be developed. The microorganisms that several billion years ago oxygenated the atmosphere; cyanobacteria, might hold the key for creating those energy technologies. Due to their capacity for photosynthesis, metabolic engineering of cyanobacteria can reroute the carbon dioxide they fix from the atmosphere into valuable products, thereby converting them into solar powered cell factories.

Of the many products bacteria can be engineered to make, the production of terpenoids has gained increasing attention for their attractive properties as fuels, pharmaceuticals, fragrances and food additives. In this thesis, I detail the work I have done on engineering the unicellular cyanobacterium Synechocystis sp. PCC 6803 for terpenoid production. By deleting an enzyme that converts squalene into hopanoids, we could create a strain that accumulates squalene, a molecule with uses as a fuel or chemical feedstock. In another study, we integrated two terpene synthases from the traditional medical plant Coleus forskohlii, into the genome of Synechocystis. Expression of those genes led to the formation of manoyl oxide, a precursor to the pharmaceutically active compound forskolin. Production of manoyl oxide in Synechocystis was further enhanced by engineering in two additional genes from C. forskohlii that boosted the flux to the product. To learn how to increase the production of squalene, manoyl oxide or any other terpenoid, we conducted a detailed investigation of each step in the MEP biosynthesis pathway, which creates the two common building blocks for all terpenoids. Each enzymatic step in the pathway was overexpressed, and increased flux was assayed by using isoprene as a reporter and several potential targets for overexpression were identified. The final part of this thesis details the characterization of native, inducible promoters and ribosomal binding sites in Synechocystis

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 63 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1455
Keyword
Metabolic engineering, Cyanobacteria, Synechocystis, Terpenoids, Genetic tools
National Category
Biochemistry and Molecular Biology Microbiology
Research subject
Microbiology
Identifiers
urn:nbn:se:uu:diva-308099 (URN)978-91-554-9761-3 (ISBN)
Public defence
2017-01-13, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (English)
Opponent
Supervisors
Available from: 2016-12-20 Created: 2016-11-23 Last updated: 2016-12-28

Open Access in DiVA

fulltext(1453 kB)79 downloads
File information
File name FULLTEXT01.pdfFile size 1453 kBChecksum SHA-512
42f6ebc5c49b4a5744fbd3912f40270dbd7992a3d1eb633f2e0f059ea065eca48dbee3257676943af94f9fd2ec11addf1be2b70a9d07169b9edbcd4c34110bd1
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Englund, EliasLiang, FeiyanLindberg, Pia
By organisation
Molecular Biomimetics
In the same journal
Scientific Reports
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
Total: 79 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 471 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf