uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Capturing individual-level parameters of influenza A virus dynamics in wild ducks using multistate models
Linnaeus Univ, Ctr Ecol & Evolut Microbial Model Syst EEMiS, SE-39182 Kalmar, Sweden..
CIRAD, Campus Int Baillarguet, F-34398 Montpellier, France..
Linnaeus Univ, Ctr Ecol & Evolut Microbial Model Syst EEMiS, SE-39182 Kalmar, Sweden.;Univ Georgia, Southeeastern Cooperat Wildlife Dis Study, Coll Vet Med, Dept Populat Hlth, Athens, GA 30602 USA..
CIRAD, Campus Int Baillarguet, F-34398 Montpellier, France..
Show others and affiliations
2016 (English)In: Journal of Applied Ecology, ISSN 0021-8901, E-ISSN 1365-2664, Vol. 53, no 4, 1289-1297 p.Article in journal (Refereed) Published
Abstract [en]

Disease prevalence in wildlife is governed by epidemiological parameters (infection and recovery rates) and response to infection, both of which vary within and among individual hosts. Studies quantifying these individual-scale parameters and documenting their source of variation in wild hosts are fundamental for predicting disease dynamics. Such studies do not exist for the influenza A virus (IAV), despite its strong impact on the global economy and public health. Using capture-recaptures of 3500 individual mallards Anas platyrhynchos during seven migration seasons at a stopover site in southern Sweden, we provide the first empirical description of the individual-based mechanisms of IAV dynamics in a wild reservoir host. For most years, prevalence and risk of IAV infection peaked at a single time during the autumn migration season, but the timing, shape and intensity of the infection curve showed strong annual heterogeneity. In contrast, the seasonal pattern of recovery rate only varied in intensity across years. Adults and juveniles displayed similar seasonal patterns of infection and recovery each year. However, compared to adults, juveniles experienced twice the risk of becoming infected, whereas recovery rates were similar across age categories. Finally, we did not find evidence that infection influenced the timing of emigration.Synthesis and applications. Our study provides robust empirical estimates of epidemiological parameters for predicting influenza A virus (IAV) dynamics. However, the strong annual variation in infection curves makes forecasting difficult. Prevalence data can provide reliable surveillance indicators as long as they catch the variation in infection risk. However, individual-based monitoring of infection is required to verify this assumption in areas where surveillance occurs. In this context, monitoring of captive sentinel birds kept in close contact with wild birds is useful. The fact that infection does not impact the timing of migration underpins the potential for mallards to spread viruses rapidly over large geographical scales. Hence, we strongly encourage IAV surveillance with a multistate capture-recapture approach along the entire migratory flyway of mallards.

Place, publisher, year, edition, pages
2016. Vol. 53, no 4, 1289-1297 p.
Keyword [en]
avian influenza, epidemiology, host-pathogen dynamics, individual-based monitoring, influenza A virus, multistate capture-recapture, outbreaks, SIR model, waterfowl, zoonosis
National Category
Infectious Medicine Ecology
Identifiers
URN: urn:nbn:se:uu:diva-308248DOI: 10.1111/1365-2664.12699ISI: 000380065600033OAI: oai:DiVA.org:uu-308248DiVA: diva2:1049471
Funder
Swedish Environmental Protection Agency, V-124-01 V-98-04Swedish Research Council, 2008-58 2010-3067 2011-48Swedish Research Council Formas, 2007-297 2009-1220
Available from: 2016-11-24 Created: 2016-11-24 Last updated: 2016-11-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Olsen, BjörnWaldenström, Jonas
By organisation
Department of Medical Biochemistry and Microbiology
In the same journal
Journal of Applied Ecology
Infectious MedicineEcology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 21 hits
ReferencesLink to record
Permanent link

Direct link