uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Lithium hyaluronate hydrogels enhance osteogenesis in vitro and ex vivo
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström. (polymer chemistry)
Show others and affiliations
(English)Manuscript (preprint) (Other (popular science, discussion, etc.))
Abstract [en]

Lithium is a clinical drug for bipolar disorders and can enhance bone mass, promote osteogenesis of MSCs through inhibiting the Wnt/β-catenin signalling inhibitor GSK 3β. However, the systemic administration of lithium can trigger severe side-effects. Local administration has been attempted in the treatment of bone defects in animal models with positive outcomes. In this study, we explored a pre-manufactured hydrogel system containing the Li ion (Li-gel) in bone applications. Human MSCs cultured in this Li-gel exhibited enhanced osteogenic differentiation. Furthermore, this Li-gel was used to treat chick embryo chorioallantoic membrane (CAM) femur defects and enhanced the bone healing process. 

Keyword [en]
Lithium, mesenchymal stem cells, bone morphogenetic protein, CAM model.
National Category
Medical Materials
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
URN: urn:nbn:se:uu:diva-307689OAI: oai:DiVA.org:uu-307689DiVA: diva2:1049880
Available from: 2016-11-25 Created: 2016-11-20 Last updated: 2016-12-02
In thesis
1. New insights into principles of scaffolds design for bone application
Open this publication in new window or tab >>New insights into principles of scaffolds design for bone application
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents deeper insights into bone applicable biomaterials’ design. Poor affinity of BMP-2 towards scaffolds required supra-physiological dose administration. Though molecules containing sulfate could sustain BMP-2 release, side effects occurred due to BMP-2 supra-dose, or these sulfate-containing biomolecules.

Improved affinity between BMP-2 and scaffolds was first witnessed by using an acidic carrier (paper I). Hyaluronic acid (HA) hydrazone derived hydrogels having a pH of 4.5-loaded BMP-2 showed sustained release of bioactive BMP-2 in vitro and enhanced bone formation in vivo, while pH 7 HA hydrogels showed Fickian behavior and less bone formation in vivo. Computational evaluation revealed stronger electrostatic interactions between BMP-2, and HA were predominant at pH 4.5, whereas, weaker Van der Waals interactions played a key role at pH 7.

During the pre-bone formation phase, endogenous cell responses to pH 4.5 and 7 with or without BMP-2 were investigated. HA hydrogels exhibited extraordinary biocompatibility and recruitment of neutrophils, monocytes, macrophages and stromal cells regardless of hydrogels’ pH and BMP-2 presence.  The different inflammatory responses to HA hydrogels were observed (Appendix).

Thiol derivatives can cleave the disulfide bond of BMP-2 to generate inactive monomeric BMP-2. In paper II, thiol-acrylate chemistry-based HA hydrogels (HA-SH) were compared to hydrazone-based HA hydrogels as BMP-2 carriers. Thiol modified HA disrupted BMP-2 integrity and bioactivity. HA-SH hydrogels with BMP-2 exhibited less bioactive BMP-2 release in vitro and induced less bone formation in vivo.

Accumulated evidence has shown great osteogenic potential of lithium ions (Li). In paper III, we coordinated Li onto HA-PVA hydrazone hydrogels (Li-gel); Li-gel enhanced 3D cultured hMSCs osteogenic differentiation and induced higher bone formation in CAM defect model.

Instead of BMP-2 protein, delivery of BMP-2-coding-plasmid can produce BMP-2 over a long term at a closer physiological level. Yet, efficient gene delivery reagents are needed. In paper IV, two novel gene delivery nanoplexes were developed by post coating DNA-nanoplexes with chondroitin sulfate (CS). To ensure the stability, aldehyde-modified CS (CS-CHO) reacted with free amines of pDNA/PEI complexes. We provided first evidence that CS-CHO coated nanoplexes controlled the release from endosomes, which is essential for higher transfection efficiency.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 87 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1459
Keyword
Chondroitin sulfate, hyaluronic acid, pH, cross-linking chemistry, bone morphogenetic protein, lithium, mesenchymal stem cell, in vivo.
National Category
Medical Materials
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
urn:nbn:se:uu:diva-308318 (URN)978-91-554-9767-5 (ISBN)
Public defence
2017-01-17, Room 80121, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:00 (English)
Opponent
Supervisors
Available from: 2016-12-20 Created: 2016-11-24 Last updated: 2016-12-20

Open Access in DiVA

No full text

By organisation
Department of Chemistry - Ångström
Medical Materials

Search outside of DiVA

GoogleGoogle Scholar

Total: 106 hits
ReferencesLink to record
Permanent link

Direct link