uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theory of strongly correlated electron systems. I. Intersite coulomb interaction and the approximation of renormalized fermions in total energy calculations
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Theoretical Magnetism.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Theoretical Magnetism.
2005 (English)In: INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, ISSN 0020-7608, Vol. 102, no 6, 1019- p.Article in journal (Refereed) Published
Abstract [en]

The diagrammatic strong-coupling perturbation theory (SCPT) for correlated electron systems is developed for intersite Coulomb interaction and for a nonorthogonal basis set. The construction is based on iterations of exact closed equations for many - electron Green functions (GFs) for Hubbard operators in terms of functional derivatives with respect to external sources. The graphs, which do not contain the contributions from the fluctuations of the local population numbers of the ion states, play a special role: a one-to-one correspondence is found between the subset of such graphs for the many - electron GFs and the complete set of Feynman graphs of weak-coupling perturbation theory (WCPT) for single-electron GFs. This fact is used for formulation of the approximation of renormalized Fermions (ARF) in which the many-electron quasi-particles behave analogously to normal Fermions. Then, by analyzing: (a) Sham's equation, which connects the self-energy and the exchange- correlation potential in density functional theory (DFT); and (b) the Galitskii and Migdal expressions for the total energy, written within WCPT and within ARF SCPT, a way we suggest a method to improve the description of the systems with correlated electrons within the local density approximation (LDA) to DFT. The formulation, in terms of renormalized Fermions LIDA (RF LDA), is obtained by introducing the spectral weights of the many electron GFs into the definitions of the charge density, the overlap matrices, effective mixing and hopping matrix elements, into existing electronic structure codes, whereas the weights themselves have to be found from an additional set of equations. Compared with LDA+U and self-interaction correction (SIC) methods, RF LDA has the advantage of taking into account the transfer of spectral weights, and, when formulated in terms of GFs, also allows for consideration of excitations and nonzero temperature. Going beyond the ARF SCPT, as well as RF LIDA, and taking into account the fluctuations of ion population numbers would require writing completely new codes for ab initio calculations. The application of RF LDA for ab initio band structure calculations for rare earth metals is presented in part 11 of this study (this issue).

Place, publisher, year, edition, pages
2005. Vol. 102, no 6, 1019- p.
Keyword [en]
density functional theory, strongly correlated electrons, lanthanides, band structure calculations, ground-state properties
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-77268DOI: doi:10.1002/qua.20210OAI: oai:DiVA.org:uu-77268DiVA: diva2:105180
Available from: 2006-03-13 Created: 2006-03-13 Last updated: 2012-03-17

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www3.interscience.wiley.com/cgi-bin/fulltext/109863389/HTMLSTART

Authority records BETA

Eriksson, Olle

Search in DiVA

By author/editor
Eriksson, Olle
By organisation
Department of PhysicsTheoretical Magnetism
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 493 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf